55 research outputs found

    SQUID measurements of remanent magnetisation in refillable 3He spin filter cells SFC

    Get PDF
    A strong influence of external magnetic fields on the relaxation time constant T1 of glass cells serving as 3He neutron spin filters, observed for different glass types in alkali metal coated cells, was initially associated with the presence of a large number of ferromagnetic clusters on the glass surface. Later experiments showed the presence of the so called T1 hysteresis phenomenon with a similar distinctiveness also in uncoated cells made of pure synthetic quartz glass. It suggests that the origin of such relaxation is a macroscopic magnetisation in the bulk material of the cell. We present the results of a multi SQUID system investigation on magnetised and non magnetised quartz glass cells, Cs coated as well as bare wall, to be used as neutron spin filters at HMI Berlin. The presence of a macroscopic remanent magnetic moment in the cells after their exposition to external magnetic fields has been experimentally shown. More than 80 of the remanent magnetic moment of the magnetised cells was found to be concentrated in the region around the glass valves. SQUID measurements reveal the existence of some remanent magnetisation in all valve parts and also in the vacuum grease, but most magnetic are the plastic parts and the O ring. Different valve and sealing types has been compared in order to find less magnetisable on

    Minichromosome maintenance proteins 2 and 5 in non-benign epithelial ovarian tumours: relationship with cell cycle regulators and prognostic implications

    Get PDF
    Minichromosome maintenance proteins (MCM) have recently emerged as novel proliferation markers with prognostic implications in several tumour types. This is the first study investigating MCM-2 and MCM-5 immunohistochemical expression in a series of ovarian adenocarcinomas and low malignant potential (LMP) tumours aiming to determine possible associations with clinicopathological parameters, the conventional proliferation index Ki-67, cell cycle regulators (p53, p27Kip1, p21WAF1 and pRb) and patients' outcome. Immunohistochemistry was applied in a series of 43 cases of ovarian LMP tumours and 85 cases of adenocarcinomas. Survival analysis was restricted to adenocarcinomas. The median MCM-2 and MCM-5 labelling indices (LIs) were significantly higher in adenocarcinomas compared to LMP tumours (P<0.0001 for both associations). In adenocarcinomas, the levels of MCM-2 and MCM-5 increased significantly with advancing tumour stage (P=0.0052 and P=0.0180, respectively), whereas both MCM-2 and MCM-5 increased significantly with increasing tumour grade (P=0.0002 and P=0.0006, respectively) and the presence of bulky residual disease (P<0.0001 in both relationships). A strong positive correlation was established between MCM-2 or MCM-5 expression level and Ki-67 LI (P<0.0001) as well as p53 protein (P=0.0038 and P=0.0500, respectively). Moreover, MCM-2 LI was inversely correlated with p27Kip−1 LI (P=0.0068). Finally, both MCM-2 and MCM-5 were associated significantly with adverse patients' outcome in both univariate (⩾20 vs >20%, P=0.0011 and ⩾25 vs <25%, P=0.0100, respectively) and multivariate (P=0.0001 and 0.0090, respectively) analysis. An adequately powered independent group of 45 patients was used in order to validate our results in univariate survival analysis. In this group, MCM-2 and MCM-5 expression retained their prognostic significance (P<0.0001 in both relationships). In conclusion, MCM-2 and MCM-5 proteins appear to be promising as prognostic markers in patients with ovarian adenocarcinomas

    Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation

    Get PDF
    Abrupt changes in ocean biogeochemical variables occur as a result of human-induced climate forcing as well as those which are more gradual and occur over longer timescales. These abrupt changes have not yet been identified and quantified to the same extent as the more gradual ones. We review and synthesise abrupt changes in ocean biogeochemistry under human-induced climatic forcing. We specifically address the ocean carbon and oxygen cycles because the related processes of acidification and deoxygenation provide important ecosystem hazards. Since biogeochemical cycles depend also on the physical environment, we also describe the relevant changes in warming, circulation, and sea ice. We include an overview of the reversibility or irreversibility of abrupt marine biogeochemical changes. Important implications of abrupt biogeochemical changes for ecosystems are also discussed. We conclude that there is evidence for increasing occurrence and extent of abrupt changes in ocean biogeochemistry as a consequence of rising greenhouse gas emissions

    Global nitrous oxide budget (1980--2020)

    Get PDF
    Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023)
    • …
    corecore