8 research outputs found

    Long-Term Infection and Vertical Transmission of a Gammaretrovirus in a Foreign Host Species

    Get PDF
    Increasing evidence has indicated natural transspecies transmission of gammaretroviruses; however, viral-host interactions after initial xeno-exposure remain poorly understood. Potential association of xenotropic murine leukemia virus-related virus (XMRV) in patients with prostate cancer and chronic fatigue syndrome has attracted broad interests in this topic. Although recent studies have indicated that XMRV is unlikely a human pathogen, further understanding of XMRV xenoinfection would allow in vivo modeling of the initial steps of gammaretroviral interspecies transmission, evolution and dissemination in a new host population. In this study, we monitored the long-term consequences of XMRV infection and its possible vertical transmission in a permissive foreign host, wild-derived Mus pahari mice. One year post-infection, XMRV-infected mice showed no notable pathological changes, while proviral DNA was detected in three out of eight mice. XMRV-infected mice remained seropositive throughout the study although the levels of gp70 Env- and p30 capsid-specific antibodies gradually decreased. When vertical XMRV transmission was assessed, no viremia, humoral immune responses nor endogenization were observed in nine offspring from infected mothers, yet one offspring was found PCR-positive for XMRV-specific sequences. Amplified viral sequences from the offspring showed several mutations, including one amino acid deletion in the receptor binding domain of Env SU. Our results therefore demonstrate long-term asymptomatic infection, low incidence of vertical transmission and limited evolution of XMRV upon transspecies infection of a permissive new host, Mus pahari

    Amelioration of Streptozotocin-Induced Diabetes in Mice with Cells Derived from Human Marrow Stromal Cells

    Get PDF
    Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach.Two HMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and approximately 12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/-0.75 to 7.63+/-1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/-0.64 mM), despite the failure to detect the expression of SUR1, a K(+)-ATP channel component required for regulation of insulin secretion.Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes

    The Antiviral Spectra of TRIM5α Orthologues and Human TRIM Family Proteins against Lentiviral Production

    Get PDF
    Rhesus monkey TRIM5α (TRIM5αrh) recognizes the incoming HIV-1 core through its C-terminal B30.2(PRYSPRY) domain and promotes its premature disassembly or degradation before reverse transcription. Previously, we have shown that TRIM5αrh blocks HIV-1 production through the N-terminal RBCC domain by the recognition of Gag polyproteins. Although all TRIM family proteins have RBCC domains, it remains elusive whether they possess similar late-restriction activities.We examined the antiviral spectra of TRIM5α orthologues and human TRIM family members which have a genetic locus proximal to human TRIM5α (TRIM5αhu), against primate lentiviral production. When HIV-1 virus-like particles (VLPs) were generated in the presence of TRIM5α proteins, rhesus, African green and cynomolgus monkey TRIM5α (TRIM5αag and TRIM5αcy), but not TRIM5αhu, were efficiently incorporated into VLPs, suggesting an interaction between HIV-1 Gag and TRIM5α proteins. TRIM5αrh potently restricted the viral production of HIV-1 groups M and O and HIV-2, but not simian lentiviruses including SIV(MAC)1A11, SIV(AGM)Tan-1 or SIV(AGM)SAB-1. TRIM5αhu did not show notable late restriction activities against these lentiviruses. TRIM5αag and TRIM5αcy showed intermediate restriction phenotypes against HIV-1 and HIV-2, but showed no restriction activity against SIV production. A series of chimeric TRIM5α constructs indicated that the N-terminal region of TRIM5αag and TRIM5αcy are essential for the late restriction activity, while the C-terminal region of TRIM5αcy negatively regulates the late restriction activity against HIV-1. When select human TRIM family proteins were examined, TRIM21 and 22 were efficiently incorporated into HIV-1 VLPs, while only TRIM22 reduced HIV-1 titers up to 5-fold. The antiviral activities and encapsidation efficiencies did not correlate with their relative expression levels in the producer cells.Our results demonstrated the variations in the late restriction activities among closely related TRIM5α orthologues and a subset of human TRIM family proteins, providing further insights into the late restriction activities of TRIM proteins

    Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells

    No full text
    Type 1 diabetes is caused by the destruction of pancreatic β-cells by T cells of the immune system. Islet transplantation is a promising therapy for diabetes mellitus. Bone marrow stem cells (BMSC) have the capacity to differentiate into various cell lineages including endocrine cells of the pancreas. To investigate the conditions that allow BMSC to differentiate into insulin-producing cells, a novel in vitro method was developed by using the histone deacetylase inhibitor, trichostatin A (TSA). BMSC, cultured in presence of TSA, differentiated into islet-like clusters under appropriate culture conditions. These islet-like clusters were similar to the cells of the islets of the pancreas. The islet-like clusters showed endocrine gene expression typical for pancreatic β-cell development and function, such as insulin (I and II), glucagon, somatostatin, GLUT-2, pancreatic duodenal homeobox-1 (PDX-1), and Pax 4. Immunocytochemistry confirmed islet-like clusters contained pancreatic hormones. The colocalization of insulin and C-peptide was also observed. Enzyme-linked immunosorbent assay analysis demonstrated that insulin secretion was regulated by glucose. Western blot analysis demonstrated the presence of stored insulin. Electron microscopy of the islet-like cells revealed an ultrastructure similar to that of pancreatic β-cells, which contain insulin granules within secretory vesicles. These findings suggest that histone-deacetylating agents could allow the differentiation of BMSC into insulin-producing β-cells

    Characterization of Retroviral and Lentiviral Vectors Pseudotyped with Xenotropic Murine Leukemia Virus-Related Virus Envelope Glycoprotein

    No full text
    Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a recently identified human retrovirus. XMRV targets XPR1 cell surface receptor, which is expressed in a broad range of human tissues including hematopoietic stem cells. In this study, Sakuma and colleagues pseudotyped HIV- and murine leukemia virus (MLV)-based vectors with XMRV envelope glycoprotein, and characterized the biological properties of the newly generated recombinant vectors
    corecore