305 research outputs found
X-band crab cavities for the CLIC beam delivery system
The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the
extraction of spent beams. In order to recover the luminosity lost through the
crossing angle a crab cavity is proposed to rotate the bunches prior to
collision. The crab cavity is chosen to have the same frequency as the main
linac (11.9942 GHz) as a compromise between size, phase stability requirements
and beam loading. It is proposed to use a HE11 mode travelling wave structure
as the CLIC crab cavity in order to minimise beam loading and mode separation.
The position of the crab cavity close to the final focus enhances the effect of
transverse wake-fields so effective wake-field damping is required. A damped
detuned structure is proposed to suppress and de-cohere the wake-field hence
reducing their effect. Design considerations for the CLIC crab cavity will be
discussed as well as the proposed high power testing of these structures at
SLAC.Comment: Proceedings of X-Band Structures and Beam Dynamics Workshop (XB08),
44th ICFA beam dynamics workshop, Cockcroft Institute, UK, 1-4 dec. 200
XCC: An X-ray FEL-based Compton Collider Higgs Factory
This report describes the conceptual design of a Higgs factory
in which 62.8 GeV electron beams collide with 1 keV X-ray free electron laser
(XFEL) beams to produce colliding beams of 62.5 GeV photons. The Higgs boson
production rate is 80,000 Higgs bosons per 10 second year, roughly the same
as the ILC Higgs rate at =250 GeV. The electron accelerator is based
on cold copper distributed coupling (C) accelerator technology. Unlike the
center-of-mass energy spectra of previous optical wavelength
collider designs, the sharply peaked center-of-mass energy
spectrum of XCC produces model independent Higgs coupling measurements with
precision on par with colliders. For the triple Higgs coupling
measurement, the XCC center-of-mass energy can be upgraded to 380 GeV, where
the cross section for is twice that of at =500 GeV. Design challenges are discussed, along
with the R\&D to address them, including demonstrators.Comment: 30 pages, 21 figures, submitted to JINST. arXiv admin note:
substantial text overlap with arXiv:2203.0848
Recommended from our members
Status of High Power Tests of Normal Conducting Single-Cell Structures
We report the results of ongoing high power tests of single-cell standing wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the maximum gradient possibilities for normal-conducting rf powered particle beam accelerators. The test setup consists of reusable mode launchers and short test structures powered by SLACs XL-4 klystron. The mode launchers and structures were manufactured at SLAC and KEK and tested at the SLAC klystron test laboratory
High Power Tests of Normal Conducting Single-Cell Structures
We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab
Recommended from our members
X-Band Crab Cavities for the CLIC Beam Delivery System
The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC. Design of a crab cavity for CLIC is underway at the Cockcroft Institute in collaboration with SLAC. This effort draws on a large degree of synergy with the ILC crab cavity developed at the Cockcroft Institute and other deflecting structure development at SLAC. A study of phase and amplitude variations in the cavity suggests that the tolerances are very tight and require a 'beyond state of the art' LLRF control system. A study of cavity geometry and its effect on the cavity fields has been performed using Microwave studio. This study has suggested that for our cavity an iris radius between 4-5 mm is optimum with an iris thickness of 2-3 mm based on group velocity and peak fields. A study of the cavity wakefields show that the single bunch wakes are unlikely to be a problem but the short bunch spacing may cause the multi-bunch wakefields to be an issue. This will require some of the modes to be damped strongly so that the wake is damped significantly before any following bunch arrives. Various methods of damping have been investigated and suggest that waveguide damping in the cells should provide sufficient damping in the vertical plane, which is the most sensitive
Gray Matter Sampling Differences Between Subdural Electrodes and Stereoelectroencephalography Electrodes.
Objective: Stereoelectroencephalography (SEEG) has seen a recent increase in popularity in North America; however, concerns regarding the spatial sampling capabilities of SEEG remain. We aimed to quantify and compare the spatial sampling of subdural electrode (SDE) and SEEG implants.
Methods: Patients with drug-resistant epilepsy who underwent invasive monitoring were included in this retrospective case-control study. Ten SEEG cases were compared with ten matched SDE cases based on clinical presentation and pre-implantation hypothesis. To quantify gray matter sampling, MR and CT images were coregistered and a 2.5mm radius sphere was superimposed over the center of each electrode contact. The estimated recording volume of gray matter was defined as the cortical voxels within these spherical models. Paired t-tests were performed to compare volumes and locations of SDE and SEEG recording. A Ripley\u27s K-function analysis was performed to quantify differences in spatial distributions.
Results: The average recording volume of gray matter by each individual contact was similar between the two modalities. SEEG implants sampled an average of 20% more total gray matter, consisted of an average of 17% more electrode contacts, and had 77% more of their contacts covering gray matter within sulci. Insular coverage was only achieved with SEEG. SEEG implants generally consist of discrete areas of dense local coverage scattered across the brain; while SDE implants cover relatively contiguous areas with lower density recording.
Significance: Average recording volumes per electrode contact are similar for SEEG and SDE, but SEEG may allow for greater overall volumes of recording as more electrodes can be routinely implanted. The primary difference lies in the location and distribution of gray matter than can be sampled. The selection between SEEG and SDE implantation depends on sampling needs of the invasive implant
Recommended from our members
Superconducting Materials Testing with a High-Q Copper RF Cavity
Superconducting RF is of increasing importance in particle accelerators. We have developed a resonant cavity with high quality factor and an interchangeable wall for testing of superconducting materials. A compact TE01 mode launcher attached to the coupling iris selectively excites the azimuthally symmetric cavity mode, which allows a gap at the detachable wall and is free of surface electric fields that could cause field emission, multipactor, and RF breakdown. The shape of the cavity is tailored to focus magnetic field on the test sample. We describe cryogenic experiments conducted with this cavity. An initial experiment with copper benchmarked our apparatus. This was followed by tests with Nb and MgB2. In addition to characterizing the onset of superconductivity with temperature, our cavity can be resonated with a high power klystron to determine the surface magnetic field level sustainable by the material in the superconducting state. A feedback code is used to make the low level RF drive track the resonant frequency
High Power test of a low group velocity X-band Accelerator Structure for CLIC
In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group has consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture ( = 0.13). The 18 cell structure has a group velocity of 2.6 % at the entrance and 1 % at the last cell. Several of these structures have been made in a collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of the first KEK/SLAC built structure is presented which reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6 per meter active length. The high-power testing was done using the NLCTA facility at SLAC
- …