2,623 research outputs found
Data reconstruction with the LHCb VELO: Hit processing, tracking, vertexing and luminosity monitoring
The LHCb experiment is dedicated to performing a detailed study of CP symmetry violation and rare decays of B and D mesons. In order to reach these physics goals the LHCb spectrometer must provide excellent vertexing and tracking performance both off-line and on-line in the trigger. The LHCb VELO (VErtex LOcator) is the silicon microstrip detector which surrounds the collision point and hence is critical to these aims. Its hit processing and zero suppression is performed in a series of algorithms implemented on FPGAs. The tuning of the parameters of these algorithms is performed using a bit-perfect emulation of these algorithms integrated in to the full off-line software of the experiment. Tracking and vertexing is then performed using the clusters produced. These algorithms are described and the results for primary and secondary vertex resolutions are given. Finally, a novel technique for measuring the absolute luminosity using gas injection in the VELO is described
Velo Event Model
This note presents the Velo Event Model, it describes the classes and data flow used in the Velo software for all stages up to and including the clusters. The description is provided for the classes used for both the real data and the simulation. This description includes the data classes used during the standard running and simulation of the experiment, and all classes defined for calibration and commissioning
Description of the Vetra Project and its Application for the VELO Detector
Vetra is the LHCb data reconstruction project which emulates the performance of the TELL1 readout board processing algorithms. This project is required for monitoring and commissioning the LHCb silicon detectors. A bit-perfect emulation of the TELL1 processing algorithms is performed. This project allows raw data (non-zero suppressed) to be processed to produce the standard zero suppressed cluster data, used by the LHCb reconstruction project Brunel. The Vetra framework is used by the VELO and ST detectors in LHCb. This note provides a general description of Vetra but concentrates on the VELO usage. Vetra is used to monitor the performance of the detector and the data acquisition board algorithms. The parameters that control the data acquisition boards are determined and optimised using Vetra. The project is used widely in the VELO and is used for testbeam and laboratory tests, including production testing for the modules
Testbeam studies of pre-prototype silicon strip sensors for the LHCb UT upgrade project
The LHCb experiment is preparing for a major upgrade in 2018-2019. One of the
key components in the upgrade is a new silicon tracker situated upstream of the
analysis magnet of the experiment. The Upstream Tracker (UT) will consist of
four planes of silicon strip detectors, with each plane covering an area of
about 2 m. An important consideration of these detectors is their
performance after they have been exposed to a large radiation dose. In this
article we present test beam results of pre-prototype n-in-p and p-in-n sensors
that have been irradiated with fluences up to
cm.Comment: 25 pages, 20 figure
Performance of the LHCb Vertex Detector Alignment Algorithm determined with Beam Test Data
LHCb is the dedicated heavy flavour experiment at the Large Hadron Collider
at CERN. The partially assembled silicon vertex locator (VELO) of the LHCb
experiment has been tested in a beam test. The data from this beam test have
been used to determine the performance of the VELO alignment algorithm. The
relative alignment of the two silicon sensors in a module and the relative
alignment of the modules has been extracted. This alignment is shown to be
accurate at a level of approximately 2 micron and 0.1 mrad for translations and
rotations, respectively in the plane of the sensors. A single hit precision at
normal track incidence of about 10 micron is obtained for the sensors. The
alignment of the system is shown to be stable at better than the 10 micron
level under air to vacuum pressure changes and mechanical movements of the
assembled system.Comment: accepted for publication in NIM
Testbeam studies of pre-prototype silicon strip sensors for the LHCb UT upgrade project
AbstractThe LHCb experiment is preparing for a major upgrade in 2018–2019. One of the key components in the upgrade is a new silicon tracker situated upstream of the analysis magnet of the experiment. The Upstream Tracker (UT) will consist of four planes of silicon strip detectors, with each plane covering an area of about 2m2. An important consideration of these detectors is their performance after they have been exposed to a large radiation dose. In this paper we present test beam results of pre-prototype n-in-p and p-in-n sensors that have been irradiated with fluences up to 4.0×1014neq/cm2
Radiation damage in the LHCb vertex locator
The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately 45 × 1012 1 MeV neutron equivalent (1 MeV neq). At the operational sensor temperature of approximately −7 °C, the average rate of sensor current increase is 18 μA per fb−1, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of Eg = 1.16±0.03±0.04 eV obtained. The first observation of n+-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around 15 × 1012 of 1 MeV neq. The only n+-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately 3 × 1012 1 MeV neq, a decrease in the Effective Depletion Voltage (EDV) of around 25 V is observed. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n+-on-n type sensors, with rates of (1.43±0.16) × 10−12 V/ 1 MeV neq and (1.35±0.25) × 10−12 V/ 1 MeV neq measured for n+-on-p and n+-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed
Spatial resolution and efficiency of prototype sensors for the LHCb VELO Upgrade
A comprehensive study of the spatial resolution and detection efficiency of
sensor prototypes developed for the LHCb VELO upgrade is presented. Data
samples were collected at the CERN SPS H8 beam line using a hadron mixture of
protons and pions with momenta of approximately 180 GeV/c. The sensor
performance was characterised using both irradiated and non-irradiated sensors.
Irradiated samples were subjected to a maximum fluence of
, of both protons and neutrons.
The spatial resolution is measured comparing the detected hits to the position
as predicted by tracks reconstructed by the Timepix3 telescope. The resolution
is presented for different applied bias voltages and track angles, sensor
thickness and implant size.Comment: 18 pages, 15 Figure
- …