19 research outputs found

    Fourteen days of smoking cessation improves muscle fatigue resistance and reverses markers of systemic inflammation

    Get PDF
    Cigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers

    Sarcopenia; Aging-related loss of muscle mass and function

    Get PDF
    Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of -motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems

    Application of ink-jet printing and spray coating for the fabrication of polyaniline/poly(N-vinylpyrrolidone)-based ammonia gas sensor

    No full text
    We report on the preparation of thin conducting films from the poly(N-vinylpyrrolidone) stabilized polyaniline dispersions for the ammonia gas sensor applications. The dispersion is waterbased and prepared by means of relatively simple chemical oxidation polymerization of aniline. Two processes were used for the ink deposition, the ink-jet printing and the spray-coating technique. With the former one, the ink was at first tested on the poly(ethylene terephthalate) foil to find a suitable combination of ink formulation and print parameters. After that, the final ammonia gas sensors were fabricated by both deposition techniques and compared. The aspects of the ink preparation and alteration, as well as the active layer properties, are analyzed by means of UV-vis spectroscopy, optical microscopy, atomic force microscopy, profilometry and electrical measurements. The results obtained from each deposition technique are discussed. In both cases, the sensitivity to the ammonia gas has been demonstrated, making the proposed ink in combination with the two named deposition processes feasible for the potential large-area sensor production

    Characterization of polyaniline-based ammonia gas sensors prepared by means of spray coating and ink-jet printing

    No full text
    This work deals with the process of ammonia gas sensor fabrication and its detailed characterization. The sensor active layer was deposited from a polyaniline dispersion. The prepared polyaniline dispersion is based on poly(N-vinylpyrrolidone), acting as a dispersion stabilizer. The dispersion synthesis was tuned towards the printing and coating process. The prepared ink was water-based. The sensor active layer was deposited by means of two different techniques; the ink-jet printing and spray coating. The ink was first optimized using the poly(ethylene terephthalate) foil as the substrate material. The optimal printing parameters and ink properties for the used deposition processes were found. The polyaniline films as well as the performance of fabricated sensors, prepared by means of the both techniques were compared. The polyaniline films were characterized by means of UV-vis spectroscopy, optical microscopy, atomic force microscopy, profilometry and electrical measurements. The differences in the film morphology and aspects of the each of the two used deposition techniques are analyzed and discussed in detail. The sensors obtained from the both techniques showed response to ammonia gas, as well as its concentration. The synthesized ink in combination with the suggested deposition processes could be therefore potentially used for the future manufacturing of the large area ammonia gas sensors. Copyrigh

    Differential effects of arginine, glutamate and phosphoarginine on Ca2+-activation properties of muscle fibres from crayfish and rat

    Full text link
    The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute (&ldquo;test&rdquo;) or not (&ldquo;control&rdquo;). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l-1) significantly shifted the force&ndash;pCa curve by 0.08&ndash;0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9&ndash;10 mmol l-1) induced a significant shift of the force&ndash;pCa curve by 0.18&ndash;0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force&ndash;pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36&ndash;40 mmol l-1), like arginine affected the force&ndash;pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08&ndash;0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins. <br /
    corecore