15 research outputs found

    Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    Full text link
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is demonstrated using particle-in-cell simulations and an analysis of separatrices in single-electron phase-space, that ion motion can suppress fast electron escape to the vacuum, which would otherwise lead to transition to the relativistic transparency regime. A simple analytical estimate shows that for large laser pulse amplitude a0a_0 the time scale over which ion motion becomes important is much shorter than usually anticipated. As a result, the threshold density above which hole-boring occurs decreases with the charge-to-mass ratio. Moreover, the transition threshold is seen to depend on the laser temporal profile, due to the effect that the latter has on electron heating. Finally, we report a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.Comment: Added new material. 15 pages, 12 figure

    Laser-driven collisionless shock acceleration of protons

    No full text
    Experimental and numerical results have shown that collisionless shock acceleration is promis-ing for generation of high energy proton beams. There are many potential applications for suchbeams, for example: isotope generation for medical applications, ion therapy and proton radio-graphy. In this work, we use 1D1P Eulerian Vlasov-Maxwell simulations to study shock waveacceleration. Vlasov-Maxwell modeling allows for high resolution of the distribution functionand is highly suitable in cases where effects of low-density tails in the distribution function needto be resolved accurately.We find that combining collisionless shock acceleration with a strong, quasi-stationary sheath-field may be a way to reach even higher maximum proton energies and optimize the ion spec-trum. We show that a layered plasma target with a combination of light and heavy ions leads toa strong quasi-static sheath-field, which induces an enhancement of the energy of shock-waveaccelerated ions, without broadening their energy spectrum, if the heavy ion layer has highdensity

    Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    No full text
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread

    Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    No full text
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread

    Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    No full text
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread
    corecore