411 research outputs found

    Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    Get PDF
    Somatically acquired mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer are associated with significant clinical responses to gefitinib, a tyrosine kinase inhibitor that targets EGFR. We screened the EGFR in 469 resected tumours of patients with lung cancer, which included 322 adenocarcinomas, 102 squamous cell carcinomas, 27 large cell carcinomas, 13 small cell carcinomas, and five other cell types. PCR with a specific condition was performed to identify any deletion in exon 19, while mutant-allele-specific amplification was performed to identify a mutation in codon 858 of exon 21. EGFR mutations were found in 136 cases (42.2%) with adenocarcinoma, in one case with large cell carcinoma, and in one case with pleomorphic carcinoma. An in-frame deletion in exon 19 was found in 62 cases while an L858R mutation was found in 77 cases. In the 322 cases with adenocarcinoma, these mutations were more frequently found in women than in men (P=0.0004), in well differentiated tumours than in poorly differentiated tumours (P=0.0014), and in patients who were never smokers than in patients who were current/former smokers (P<0.0001). The mutation was more frequently observed in patients who smoked ⩽20 pack-year, and in patients who quit at least 20 years before the date of diagnosis for lung cancer. The K-ras mutations were more frequently found in smokers than in never smokers, and in high-dose smokers than in low-dose smokers. In conclusion, the mutations within the tyrosine kinase domain of EGFR were found to specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    Gefitinib induction followed by chemoradiotherapy in EGFR-mutant, locally advanced non-small-cell lung cancer: LOGIK0902/OLCSG0905 phase II study

    Get PDF
    Background: The role of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) induction coupled with standard concurrent chemoradiotherapy (CRT) is unclear in unresectable, stage III, EGFR-mutant non-small-cell lung cancer (NSCLC). Therefore, a phase II trial was conducted to evaluate the efficacy and safety of gefitinib induction followed by CRT in this disease setting. Patients and methods: Patients with unresectable, EGFR-mutant, stage III NSCLC were administered gefitinib monotherapy (250 mg/day) for 8 weeks. Subsequently, patients without disease progression during induction therapy were administered cisplatin and docetaxel (40 mg/m(2) each) on days 1, 8, 29, and 36 with concurrent radiotherapy at a total dose of 60 Gy. The primary endpoint was the 2-year overall survival (OS) rate, which was hypothesized to reach 85%, with a threshold of the lower limit of 60%. Results: Twenty patients (median age: 66 years; male/female: 9/11; histology: 20 adenocarcinoma; stage IIIA/IIIB: 9/11; and exon 19/21: 10/10) were enrolled. The 2-year OS rate was 90% (90% confidence interval: 71.4% to 96.8%), indicating that this trial met the primary objective. The overall response rate and 1- and 2-year progression-free survival rates were 85.0%, 58.1%, and 36.9%, respectively. Grade >= 3 adverse events (>10%) included hepatic toxicity during the induction phase and neutropenia and febrile neutropenia in the CRT phase. Radiation pneumonitis grade >= 3 or treatment-related death did not occur. Conclusions: This is the first prospective study to demonstrate the favorable efficacy and safety of EGFR-TKI induction followed by standard CRT in EGFR-mutant, stage III NSCLC. Further confirmatory studies are needed

    Excited State Interactions in Flurbiprofen-Tryptophan dyads

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry B, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/jp071301z[EN] Fluorescence and laser-flash photolysis measurements have been performed on two pairs of diastereomeric dyads that contain the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen (FBP) and (S)-tryptophan (Trp), which is a relevant amino acid present in site I of human serum albumin. The fluorescence spectra were obtained when subjected to excitation at 266 nm, where similar to 60% of the light is absorbed by FBP and similar to 40% is absorbed by Trp; the most remarkable feature observed in all dyads was a dramatic fluorescence quenching, and the residual emission was assigned to the Trp chromophore. In addition, an exciplex emission was observed as a broad band between 380 and 500 nm, especially in the case of the (R,S) diastereomers. The fluorescence lifetimes (tau(F)) at lambda(em) = 340 nm were clearly shorter in the dyads than in Trp-derived model compounds; in contrast, the values of tau(F) at lambda(em) = 440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-triplet transient absorption spectrum was obtained when subjected to laser-flash photolysis, although the signals were less intense than when FBP was directly excited under the same conditions. The main photophysical events in FBP-Trp dyads can be summarized as follows: (1) most of the energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp ((1)Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from excited FBP ((FBP)-F-1*); (2) a minor, yet stereoselective deactivation of (FBP)-F-1* leads to detectable exciplexes and/or radical ion pairs; (3) the main process observed is intramolecular (1)Trp* quenching; and (4) the first triplet excited-state of FBP can be populated by triplet-triplet energy transfer from excited Trp or by back-electron transfer within the charge-separated states.Financial support from the MCYT (CTQ2004-03811) and the Generalitat Valenciana (GV06/099) is gratefully acknowledged. Author I.V. thanks MEC for a fellowship.Vayá Pérez, I.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2007). Excited State Interactions in Flurbiprofen-Tryptophan dyads. The Journal of Physical Chemistry B. 111(31):9363-9371. https://doi.org/10.1021/jp071301zS936393711113

    Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Get PDF
    BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis

    Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid

    Get PDF
    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid

    Video-assisted thoracoscopic resection for intralobar pulmonary sequestration.

    Get PDF
    Video-assisted thoracoscopic treatment of intralobar pulmonary sequestration in an obese (120 kg, body mass index 42) young man is described. Two aberrant arteries originating from the descending thoracic aorta were transected with a vascular stapler, and a left lower lobectomy was successfully performed thoracoscopically. Three-dimensional chest computed tomography was used to identify the aberrant vessels. Video-assisted thoracoscopic lobectomy is useful and minimally invasive for treating pulmonary sequestration, especially in obese patients.The original publication is available at www.springerlink.co

    The cadherin–catenin complex in nasopharyngeal carcinoma

    Get PDF
    Abnormal Wnt signaling and impaired cell–cell adhesion due to abnormal E-cadherin and β-catenin function have been implicated in many cancers, but have not been fully explored in nasopharyngeal carcinoma. The aim of this study was to analyze β-Catenin cellular location and E-cadherin expression levels in nasopharyngeal carcinoma. E-cadherin expression levels were also correlated with clinical data and underlying pathology. β-Catenin and E-cadherin expression were examined in 18 nasopharyngeal carcinoma and 7 non-tumoral inflammatory pharynx tissues using immunohistochemical methods. Patient clinical data were collected, and histological evaluation was performed by hematoxylin/eosin staining. β-catenin was detected in membrane and cytoplasm in all cases of nasopharyngeal carcinoma, regardless of histological type; in non-tumoral tissues, however, β-catenin was observed only in the membrane. As for E-cadherin expression levels, strong staining was observed in most non-tumoral tissues, but staining was only moderate in nasopharyngeal carcinoma tissues. E-cadherin expression was associated with β-catenin localization, study group, metastatic disease, and patient outcomes. Reduced levels of E-cadherin protein observed in nasopharyngeal carinoma may play an important role in invasion and metastasis. Cytoplasmic β-catenin in nasopharyngeal carcinoma may impair cell–cell adhesion, promoting invasive behavior and a metastatic tumor phenotype
    corecore