147 research outputs found
Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant
Highly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call “quantification of CsMPs” (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.0523 becquerel/PSL/h (Bq/PSL/h). In soil collected from Nagadoro, Fukushima, Japan, CsMPs were detected in soil sieved with a 114 μm mesh. There was no overlap between the radioactivities of CsMPs and clay particles adsorbing Cs. Based on the distribution of radioactivity of CsMPs, the threshold radioactivity of CsMPs in the size fraction of <114 μm was determined to be 0.06 Bq. Based on this method, the number and radioactivity fraction of CsMPs in four surface soils collected from the vicinity of the FDNPP were determined to be 48–318 particles per gram and 8.53–31.8%, respectively. The QCP method is applicable to soils with a total radioactivity as high as ∼106 Bq/kg. This novel method is critically important and can be used to quantitatively understand the distribution and migration of the highly radioactive CsMPs in near-surface environments surrounding Fukushima
A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein*
A skin mucus lectin exhibiting a homodimeric structure and an S–S bond between subunits of ∼40 kDa was purified from flathead Platycephalus indicus (Scorpaeniformes). This lectin, named FHL (FlatHead Lectin), exhibited mannose-specific activity in a Ca2+-dependent manner. Although FHL showed no homology to any previously reported lectins, it did exhibit ∼20% identity to previously discovered plasma kallikreins and coagulation factor XIs of mammals and Xenopus laevis. These known proteins are serine proteases and play pivotal roles in the kinin-generating system or the blood coagulation pathway. However, alignment analysis revealed that while FHL lacked a serine protease domain, it was homologous to the heavy-chain domain of plasma kallikreins and coagulation factor XI therefore suggesting that FHL is not an enzyme but rather a novel animal lectin. On the basis of this finding, we investigated the lectin activity of human plasma kallikrein and revealed that it could indeed act as a lectin. Other genes homologous to FHL were also found in the genome databases of some fish species, but not in mammals. In contrast, plasma kallikreins and coagulation factor XI have yet to be identified in fish. The present findings suggest that these mammalian enzymes may have originally emerged as a lectin and may have evolved into molecules with protease activity after separation from common ancestors
Research on an online self-organizing radial basis function neural network
A new growing and pruning algorithm is proposed for radial basis function (RBF) neural network structure design in this paper, which is named as self-organizing RBF (SORBF). The structure of the RBF neural network is introduced in this paper first, and then the growing and pruning algorithm is used to design the structure of the RBF neural network automatically. The growing and pruning approach is based on the radius of the receptive field of the RBF nodes. Meanwhile, the parameters adjusting algorithms are proposed for the whole RBF neural network. The performance of the proposed method is evaluated through functions approximation and dynamic system identification. Then, the method is used to capture the biochemical oxygen demand (BOD) concentration in a wastewater treatment system. Experimental results show that the proposed method is efficient for network structure optimization, and it achieves better performance than some of the existing algorithms
COMMISSIONING OF THE KEKB LINAC
Abstract The injector linac for the KEKB ring has been commissioned step by step since last autumn, while continuing the construction of the remaining parts as well as ordinary operation for beam injection into the Photon Factory. The commissioning has so far given quite satisfactory results: (1) A single-bunched beam with a charge of about 1.5 nC for direct injection into the ring was accelerated to the end of the linac (about 8 GeV)
OPTICS CORRECTION FOR KLYSTRON SWITCHING AT THE KEKB INJECTOR LINAC
Abstract For the high luminosity operation of the KEKB-factory, the beam injection time from the linac to the storage rings is desired to be short. However, the injection is sometimes interrupted by a temporary rf-trip of the klystron. In case of a serious failure, the klystron is switched to a spare one to compensate for the acceleration energy. After the switching, the injection is often degraded because of the beam optical mis-matching due to the change in the beam energy at each quadrupole. We have developed software which can estimate the beam energy at each quadrupole, calculate the optics so as to achieve the desired matching and change the settings of the relevant quadrupoles in short time. The experimental result of the recovery of the optical matching is also shown
- …