276 research outputs found

    Expert opinion versus transaction evidence: using the Reilly index to measure open space premiums in the urban-rural fringe

    Get PDF
    Due to economic and population growth farmland and to a lesser extend other undeveloped areas are under pressure in the urban-rural fringe in British Columbia, Canada. The objectives of this paper are to determine if residential property values near Victoria, BC include open-space premiums for farmland or parks or both, and to determine if using assessed values instead of market prices of the property result in the same findings. We estimate a SUR (Seemingly Unrelated Regression) model with two hedonic pricing equations, one with actual market values as the dependent variable and one with assessed property values, and compare the resulting estimates of shadow prices for open space amenities. Furthermore, we take account of spatial autocorrelation and combine Method of Moment estimates of the spatial parameters in both equation

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Large quantum dots with small oscillator strength

    Full text link
    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size and predict a very large oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be much below the upper limit imposed by the strong confinement model. We attribute these findings to exciton localization in local potential minima arising from alloy intermixing inside the quantum dots.Comment: 4 pages, 3 figures, submitte

    Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane

    Full text link
    Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.Comment: 5 pages, 4 figure

    Action at a distance: Dependency sensitivity in a New World primate

    Get PDF
    Sensitivity to dependencies (correspondences between distant items) in sensory stimuli plays a crucial role in human music and language. Here, we show that squirrel monkeys (Saimiri sciureus) can detect abstract, non-adjacent dependencies in auditory stimuli. Monkeys discriminated between tone sequences containing a dependency and those lacking it, and generalized to previously unheard pitch classes and novel dependency distances. This constitutes the first pattern learning study where artificial stimuli were designed with the species' communication system in mind. These results suggest that the ability to recognize dependencies represents a capability that had already evolved in humans' last common ancestor with squirrel monkeys, and perhaps before. © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited

    Prevention and Intervention Programs Targeting Sexual Abuse in Individuals with Mild Intellectual Disability:A Systematic Review

    Get PDF
    Introduction: Compared to their non-disabled peers, individuals with mild intellectual disability (MID) are at higher risk of becoming a victim of sexual abuse and more vulnerable to its disruptive effects. This review provides an overview of content and effectiveness of prevention and intervention programs targeting sexual abuse in individuals with MID. Methods: PRISMA guidelines were followed and quality and effectiveness of the programs were evaluated taking into account the rating of the Quality Assessment Tool for Quantitative Studies (QATQS). Results: Twelve studies were included. In prevention programs role-play prevailed, whereas the content of intervention programs varied. All studies received a "weak" QATQS rating. By consequence, effectiveness of the program was downgraded to "unclear" in ten, and "ineffective" in two studies. Conclusion: Further development of programs and higher quality of research is needed to investigate whether they are effective in preventing sexual abuse or reducing its consequences in individuals with MID

    Single-photon nonlinear optics with a quantum dot in a waveguide

    Get PDF
    Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures

    Size-Dependence of the Wavefunction of Self-Assembled Quantum Dots

    Get PDF
    The radiative and non-radiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results and a theoretical model we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics experiments.Comment: 5 pages, 3 figure

    Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    Get PDF
    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to the photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements β\beta-factors of up to 0.89 are derived, and an unprecedented large bandwidth of 20 nm is demonstrated. This shows the promising potential of photonic crystal waveguides for efficient single-photon sources. The scaled frequency where the enhancement is observed is in excellent agreement with theory taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguide.Comment: 4 pages, 4 figures, submitted to PR
    • …
    corecore