16 research outputs found

    Lipid-induced changes in the secondary structure of snake venom cardiotoxins.

    Get PDF
    The secondary structures of three snake venom cardiotoxins (from Hemachatus hemachatus, Naja naja atra, and Naja naja naja), in aqueous solution and in a lipid-bound form, were investigated by Fourier-transform infrared spectroscopy. The conformation-sensitive protein infrared bands in the amide I region were analyzed using deconvolution and band-fitting procedures. The spectra of the three cardiotoxins in aqueous buffer are very similar; they indicate a high content of both antiparallel beta-sheet structure and unordered conformation. Moreover, component bands characteristic of turns can also be identified. The binding of cardiotoxins to bilayers of dimyristoylphosphatidyl-glycerol results in an increased content of a beta-structure at the expense of the nonordered conformation. It is suggested that lipid-induced conformational transitions to a beta-structure, similar to that observed with cardiotoxins, may be operative also in membrane interaction of other proteins and peptides, particularly with those which have a small tendency to form alpha-helices

    Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.

    Get PDF
    Comparison of the fluorescence spectra and the effect of temperature on the quantum yields of fluorescence of Azurin (from Pseudomonas fluorescens ATCC-13525-2) and 3-methylindole (in methylcyclohexane solution) provides substantive evidence that the tryptophan residue in azurin is completely inaccessible to solvent molecules. The quantum yields of azurin (CuII), azurin (CuI), and apoazurin (lambda ex = 291 nm) were 0.052, 0.054, and 0.31, respectively. Other evidence indicates that there is no energy transfer from tyrosine to tryptophan in any of these proteins. The fluorescence decay behavior of each of the azurin samples was found to be invariant with emission wavelength. The fluorescences of azurin (CuII) and azurin (CuI) decay with dual exponential kinetics (tau 1 = 4.80 ns, tau 2 = 0.18 ns) while that of apoazurin obeys single exponential decay kinetics (tau = 4.90). The ratio of pre-exponentials of azurin (CuII), alpha 1/alpha 2, is found to be 0.25, and this ratio increases to 0.36 on reduction to azurin (CuI). The results are interpreted as originating from different interactions of the tryptophan with two conformers of the copper-ligand complex in azurin

    Tonographie

    No full text
    corecore