37 research outputs found

    Noninvasive Glioblastoma Testing: Multimodal Approach to Monitoring and Predicting Treatment Response

    Get PDF
    Contains fulltext : 191178.pdf (publisher's version ) (Open Access)Glioblastoma is the most aggressive adult primary brain tumor which is incurable despite intensive multimodal treatment. Inter- and intratumoral heterogeneity poses one of the biggest barriers in the diagnosis and treatment of glioblastoma, causing differences in treatment response and outcome. Noninvasive prognostic and predictive tests are highly needed to complement the current armamentarium. Noninvasive testing of glioblastoma uses multiple techniques that can capture the heterogeneity of glioblastoma. This set of diagnostic approaches comprises advanced MRI techniques, nuclear imaging, liquid biopsy, and new integrated approaches including radiogenomics and radiomics. New treatment options such as agents targeted at driver oncogenes and immunotherapy are currently being developed, but benefit for glioblastoma patients still has to be demonstrated. Understanding and unraveling tumor heterogeneity and microenvironment can help to create a treatment regime that is patient-tailored to these specific tumor characteristics. Improved noninvasive tests are crucial to this success. This review discusses multiple diagnostic approaches and their effect on predicting and monitoring treatment response in glioblastoma

    Noninvasive Glioblastoma Testing: Multimodal Approach to Monitoring and Predicting Treatment Response

    No full text
    Glioblastoma is the most aggressive adult primary brain tumor which is incurable despite intensive multimodal treatment. Inter- and intratumoral heterogeneity poses one of the biggest barriers in the diagnosis and treatment of glioblastoma, causing differences in treatment response and outcome. Noninvasive prognostic and predictive tests are highly needed to complement the current armamentarium. Noninvasive testing of glioblastoma uses multiple techniques that can capture the heterogeneity of glioblastoma. This set of diagnostic approaches comprises advanced MRI techniques, nuclear imaging, liquid biopsy, and new integrated approaches including radiogenomics and radiomics. New treatment options such as agents targeted at driver oncogenes and immunotherapy are currently being developed, but benefit for glioblastoma patients still has to be demonstrated. Understanding and unraveling tumor heterogeneity and microenvironment can help to create a treatment regime that is patient-tailored to these specific tumor characteristics. Improved noninvasive tests are crucial to this success. This review discusses multiple diagnostic approaches and their effect on predicting and monitoring treatment response in glioblastoma
    corecore