250 research outputs found

    The Crystal and Molecular Structure of a Trifluoroacetylacetonate Complex of Scandium, Sc(CH\u3csub\u3e3\u3c/sub\u3eCOCHCOCF\u3csub\u3e3\u3c/sub\u3e)\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    The crystal and molecular structure of Sc(CH3COCHCOCF3)3 has been determined by X-ray diffraction. The compound crystallizes as pure mer-isomer in the orthorhombic space group Pbca with lattice parameters a=15.166(8) Å, b=13.560(7) Å, c=19.327(10) Å, α=β=γ=90°, V=3974(4) Å3, Z=8. The complex at 100 K is partially disordered in the crystal structure in an approximate 5:1 ratio with 83% fluorine population at C-11 and 17% at C-15. NMR data is compared to that previously reported

    Crystal and molecular structure of bis(8-phenylmenthyl) 2-(2-methyl-5-oxo-3-cyclohexen-1-yl)propandioate, C\u3csub\u3e42\u3c/sub\u3eH\u3csub\u3e54\u3c/sub\u3eO\u3csub\u3e5\u3c/sub\u3e• CH\u3csub\u3e3\u3c/sub\u3eCN

    Get PDF
    The X-ray crystal structure of the title compound, as crystallized from acetonitrile-water was determined. The relative stereochemistry of the cyclohexenone ring with respect to the 8-phenylmenthyl esters was determined. The title compound crystallizes in the noncentrosymmetric space group P21, with a=8.9850(10) Å, b=15.575(3) Å, c=14.478(2) Å, β=94.61(2)°, and D calc=1.118 g cm−3 for Z=2

    Preparation, Characterization and Reactivity of (3-Methylpentadienyl)iron(1+) Cations

    Get PDF
    The title cations (9 and 12) were prepared by dehydration of (3-methyl-2,4-pentadien-1-ol)Fe(CO)2L+ complexes. The structure of the (CO)2PPh3-ligated 12 was determined by single-crystal X-ray analysis. Reaction of carbon and heteroatom nucleophiles to (3-methylpentadienyl)Fe(CO)3+ cations 9 and 12 proceeds either via attack at the dienyl terminus to give (3-methyl-1,3Z-diene)iron complexes or via attack at the internal carbon, followed by carbon monoxide insertion and reductive elimination to afford 3-methyl-4-substituted cyclohexenones. Cyclohexenone formation was found to be prevalent for addition of stabilized nucleophiles with strongly dissociated counterions to cation 9 (L = CO). Reaction of cation 9 with sodium bis[(−)-8-phenylmenthyl] malonate gave a single diastereomeric cyclohexenone

    Synthesis and reactivity of tricarbonyl(1-methoxycarbonyl-5-phenylpentadienyl)iron(1+) cation

    Get PDF
    Tricarbonyl(1-methoxycarbonyl-5-phenylpentadienyl)iron(1+) hexafluorophosphate (7) was prepared in two steps from tricarbonyl(methyl 6-oxo-2,4-hexadienoate)iron. While addition of carbon and heteroatom nucleophiles to 7 generally occurs at the phenyl-substituted dienyl carbon to afford (2,4-dienoate)iron products, the addition of phthalimide proceeded at C2 to afford a (pentenediyl)iron product (18). Complex 18 was structurally characterized by X-ray diffraction analysis. The reaction of the title cation with carbon and heteroatom nucleophiles was examined. In general, the products arise from nucleophilic attack at C5 to give E,E- or E,Z-dienoate iron complexes. Addition of phthalimide anion proceeds at C2 of the cation to afford a (pentenediyl)iron complex, whose structure was confirmed by X-ray diffraction analysis

    P–C and C–H Bond Cleavages of dppm in the Thermal Reaction of [Ru\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e10\u3c/sub\u3e(μ-dppm)] with Benzothiophene: X-ray structures of [Ru\u3csub\u3e6\u3c/sub\u3e(μ-CO)(CO)\u3csub\u3e13\u3c/sub\u3e{μ\u3csub\u3e4\u3c/sub\u3e-PhP(C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)PPh}(μ\u3csub\u3e6\u3c/sub\u3e-C)] and [Ru\u3csub\u3e4\u3c/sub\u3e(CO)\u3csub\u3e9\u3c/sub\u3e(μ\u3csub\u3e3\u3c/sub\u3e-η\u3csup\u3e2\u3c/sup\u3e-PhPCH\u3csub\u3e2\u3c/sub\u3ePPh\u3csub\u3e2\u3c/sub\u3e)(μ\u3csub\u3e4\u3c/sub\u3e-η\u3csup\u3e6\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e-C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)(μ-H)]

    Get PDF
    The thermal reaction of [Ru3(CO)10(μ-dppm)] (1) with benzothiophene in refluxing toluene gives a complex mixture of products. These include the known compounds [Ru2(CO)6{μ-CH2PPh(C6H4)PPh}] (2), [Ru2(CO)6{μ-C6H4PPh(CH2)PPh}] (3), [Ru3(CO)9{μ3-η3-(Ph)PCH2P(Ph)C6H4}] (4) and [Ru3(CO)10{μ-η2-PPh(CH2)(C6H4)PPh}] (6), as well as the new clusters [Ru6(μ-CO)(CO)13{μ3-η2-PhP(C6H4)PPh}(μ6-C)] (5) and [Ru4(CO)9(μ3-η2-PhPCH2PPh2)(μ4-η6:η1:η1-C6H4)(μ-H)] (7). The solid-state molecular structures of 5 and 7 were confirmed by single crystal X-ray analyses. Compound 5 consists of interesting example of a hexaruthenium interstitial carbido cluster having a tetradentate diphosphine ligand derived from the activation of P–C and C–H bonds of the dppm ligand in 1. The tetranuclear compound 7 consists of a unique example of a non-planar spiked triangular metal fragment of ruthenium [Ru(1), Ru(2) and Ru(3)] unit with Ru(4) being bonded to Ru(1). The μ4-η1:η6:η1-benzyne ligand in this compound represents a previously uncharacterized bonding mode for benzyne. Compounds 5 and 7 do not contain any benzothiophene-derived ligand. The reaction of 4 with benzothiophene gives 2, 3, 5 and 6. Thermolysis of 1 in refluxing toluene gives 2, 3 and 4; none of 5 and 7 is detected in reaction mixture

    Decarbonylation Reaction of [Os\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e10\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-H)(\u3cem\u3eμ\u3c/em\u3e-SN\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e5\u3c/sub\u3e)]: X-ray Structures of the Two Isomers of [Os\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e9\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-H)(\u3cem\u3eμ\u3c/em\u3e\u3csub\u3e3\u3c/sub\u3e-\u3cem\u3eη\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e-SN\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e5\u3c/sub\u3e)]

    Get PDF
    The thermal reaction of [Os3(CO)10(μ-H)(μ-SN2C4H5)] (1) at 110 °C afforded the new compound [Os3(CO)9(μ-H)(μ 3-η 2-SN2C4H5)] (2) in 84% yield. Compound 2 exists as two isomers, which differ in the disposition of the bridging hydride ligand. Both of the isomers of 2 have been characterized by a combination of elemental analysis, infrared and 1H NMR spectroscopic data together with single crystal X-ray crystallography. The isomers crystallize together in the triclinic space group P-1 with a = 10.4775(2), b = 13.3056(3), c = 15.0325(3) Å, α = 110.8890(10), β = 99.3880(10), γ = 96.1620(10)°, Z = 2 and V = 1900.31(7) Å3

    Investigations of 2-Thiazoline-2-thiol as a Ligand: Synthesis and X-ray Structures of [Mn\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e7\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-NS\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e3\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3e] and [Mn(CO)\u3csub\u3e3\u3c/sub\u3e(PPh\u3csub\u3e3\u3c/sub\u3e)(\u3cem\u3eκ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e-NS\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e3\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)]

    Get PDF
    Treatment of Mn2(CO)10 with 2-thiazoline-2-thiol in the presence of Me3NO at room temperature afforded the dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) in 51 and 34% yields, respectively. Compound 1 was quantitatively converted into 2 when reacted with one equiv of Me3NO. Reaction of 1 with triphenylphosphine at room temperature furnished the mononuclear complex [Mn(CO)3(PPh3)(κ 2-NS2C3H4)] (3) in 66% yield. All three new complexes have been characterized by elemental analyzes and spectroscopic data together with single crystal X-ray diffraction studies for 1 and 3. Compound 1 crystallizes in the orthorhombic space group Pbca with a = 12.4147(2), b = 16.2416(3), c = 19.0841(4) Å, β = 90°, Z = 8 and V = 3848.01(12) Å3 and 3 crystallizes in the monoclinic space group P 21/n with a = 10.41730(10), b = 14.7710(2), c = 14.9209(2) Å, β = 91.1760(10)°, Z = 4 and V = 2295.45(5) Å3

    Dirhenium Carbonyl Complexes Bearing 2-Vinylpyridine, Morpholine and 1-Methylimidazole Ligands

    Get PDF
    Treatment of the labile compound [Re2(CO)8(MeCN)2] with 2-vinylpyridine in refluxing benzene affords exclusively the new compound [Re2(CO)8(μ-η1:η2-NC5H4CHCH2)] (1) in 39% yield in which the μ-η1:η2-vinylpyridine ligand is coordinated to one Re atom through the nitrogen and to the other Re atom via the olefinic double bond. Reaction of [Re2(CO)8(MeCN)2] with morpholine in refluxing benzene furnishes two compounds, [Re2(CO)9(η1-NC4H9O)] (2) and [Re2(CO)8(η1-NC4H9O)2] (3) in 5% and 29% yields, respectively. Reaction of [Re2(CO)8(MeCN)2] with 1-methylimidazole gives [Re2(CO)8{η1-NC3H3N(CH3)}2] (4) and the mononuclear compound fac-[ReCl(CO)3{η1-NC3H3N(CH3)}2] (5) in 18% and 26% yields, respectively. In the disubstituted compounds 2 and 4, the heterocyclic ligands occupy equatorial coordination sites. The mononuclear compound 5 consists of three CO groups, two N coordinated η1-1-methylimidazole ligands and a terminal Cl ligand. The XRD structures of complexes 1, 3 and 5 are reported

    Activation of Tri(2-Furyl)Phosphine at a Dirhenium Centre: Formation of Phosphido-Bridged Dirhenium Complexes

    Get PDF
    Reaction of tri(2-furyl)phosphine (PFu3) with [Re2(CO)10−n(NCMe)n] (n = 1, 2) at 40 °C gave the substituted complexes [Re2(CO)10−n(PFu3)n] (1 and 2), the phosphines occupying axial position in all cases. Heating [Re2(CO)10] and PFu3 in refluxing xylene also gives 1 and 2 together with four phosphido-bridged complexes; [Re2(CO)8−n(PFu3)n(μ-PFu2)(μ-H)] (n = 0, 1, 2) (3–5) and [Re2(CO)6(PFu3)2(μ-PFu2)(μ-Cl)] (6) resulting from phosphorus–carbon bond cleavage. A series of separate thermolysis experiments has allowed a detailed reaction pathway to be unambiguously established. A similar reaction between [Re2(CO)10] and PFu3 in refluxing chlorobenzene furnishes four complexes which include 1, 2, 6 and the new binuclear complex [Re2(CO)6(η1-C4H3O)2(μ-PFu2)2] (7). All new complexes have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies

    Reactivity of [Re\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e8\u3c/sub\u3e(MeCN)\u3csub\u3e2\u3c/sub\u3e] with Thiazoles: Hydrido Bridged Dirhenium Compounds Bearing Thiazoles in Different Coordination Modes

    Get PDF
    Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)–H bond of the ligand, bridges Re–Re bond opposite the thiazolide ligand in compounds 1–4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1–4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1–5 are reported
    • …
    corecore