100 research outputs found

    Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer

    Get PDF
    Nitrite (NO2−) is an intrinsic signaling molecule that is reduced to NO during ischemia and limits apoptosis and cytotoxicity at reperfusion in the mammalian heart, liver, and brain. Although the mechanism of nitrite-mediated cytoprotection is unknown, NO is a mediator of the ischemic preconditioning cell-survival program. Analogous to the temporally distinct acute and delayed ischemic preconditioning cytoprotective phenotypes, we report that both acute and delayed (24 h before ischemia) exposure to physiological concentrations of nitrite, given both systemically or orally, potently limits cardiac and hepatic reperfusion injury. This cytoprotection is associated with increases in mitochondrial oxidative phosphorylation. Remarkably, isolated mitochondria subjected to 30 min of anoxia followed by reoxygenation were directly protected by nitrite administered both in vitro during anoxia or in vivo 24 h before mitochondrial isolation. Mechanistically, nitrite dose-dependently modifies and inhibits complex I by posttranslational S-nitrosation; this dampens electron transfer and effectively reduces reperfusion reactive oxygen species generation and ameliorates oxidative inactivation of complexes II–IV and aconitase, thus preventing mitochondrial permeability transition pore opening and cytochrome c release. These data suggest that nitrite dynamically modulates mitochondrial resilience to reperfusion injury and may represent an effector of the cell-survival program of ischemic preconditioning and the Mediterranean diet

    Multiple etiologies of axonal sensory motor polyneuropathy in a renal transplant recipient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Neurological complications leading to morbidity and mortality are not frequent in renal transplant recipients. Here, we report a renal transplant recipient who presented with diminished strength in his limbs probably due to multiple etiologies of axonal sensorimotor polyneuropathy, which resolved with intravenous immunoglobulin.</p> <p>Case presentation</p> <p>A 49-year-old Iranian male renal transplant recipient with previous history of autosomal dominant polycystic kidney disease presented with diminished strength in his limbs one month after surgery. Our patient was on cyclosporine A, mycophenolate mofetil and prednisone. Although a detected hypophosphatemia was corrected with supplemental phosphate, the loss of strength was still slowly progressive and diffuse muscular atrophy was remarkable in his trunk, upper limb and pelvic girdle. Meanwhile, his cranial nerves were intact. Post-transplant diabetes mellitus was diagnosed and insulin therapy was initiated. In addition, as a high serum cyclosporine level was detected, the dose of cyclosporine was reduced. Our patient was also put on intravenous ganciclovir due to positive serum cytomegalovirus immunoglobulin M antibody. Despite the reduction of oral cyclosporine dose along with medical therapy for the cytomegalovirus infection and diabetes mellitus, his muscular weakness and atrophy did not improve. One week after administration of intravenous immunoglobulin, a significant improvement was noted in his muscular weakness.</p> <p>Conclusion</p> <p>A remarkable response to intravenous immunoglobulin is compatible with an immunological basis for the present condition (post-transplant polyneuropathy). In cases of post-transplant polyneuropathy with a high clinical suspicion of immunological origin, administration of intravenous immunoglobulin may be recommended.</p

    Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Get PDF
    BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed

    Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Get PDF
    Tandemly arrayed genes (TAGs) account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse
    corecore