23 research outputs found

    Functional Plasticity of the Developing Cardiovascular System: Examples from Different Vertebrates

    No full text
    Technical advances that have made it possible to perform physiological measurements on very small organisms, including those in embryonic and larval stages, have resulted in the formation of the discipline of developmental physiology. The transparency and size of developing organisms in some areas permit insights into physiological processes that cannot be obtained with opaque, adult organisms. On the other hand, it is widely accepted that without eggs, there are no chickens, so physiological adaptations during early life are just as important to species survival as those manifested by adults. Physiological adaptations of early developmental stages, however, are not always the same as patterns known in adults; they often follow their own rules. The adaptability of early developmental stages demonstrates that development is not stereotyped and a phenotype is not just the result of genetic information and the expression of a certain series of genes. Environmental factors influence phenotype production, and this in turn results in flexibility and plasticity in physiological processes. This article comprises exemplary studies presented at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry (Maasai Mara, Kenya, 2008). It includes a brief introduction into technical advances, discusses the developing cardiovascular system of various vertebrates, and demonstrates the flexibility and plasticity of early developmental stages. Fluid forces, oxygen availability, ionic homeostasis, and the chemical environment (including, e. g., hormone concentrations or cholesterol levels) all contribute to the shaping and performance of the cardiovascular system.Stem cells & developmental biolog

    Simple and Rapid Quantification of Thrombocytes in Zebrafish Larvae

    No full text
    Platelets are a critical component of hemostasis, with disorders of number or function resulting in coagulation disturbances. Insights into these processes have primarily been realized through studies using mammalian models or tissues. Increasingly, zebrafish embryos and larvae have been used to study the protein and cellular components of hemostasis and thrombosis, including the thrombocyte, a nucleated platelet analog. However, investigations of thrombocytes have been somewhat limited due to lack of a robust and simple methodology for quantitation, an important component of platelet studies in mammals. Using video capture, we have devised an assay that produces a rapid, reproducible, and precise measurement of thrombocyte number in zebrafish larvae by counting fluorescently tagged cells. Averaging 1000 frames, we were able to subtract background fluorescence, thus limiting assessment to circulating thrombocytes. This method facilitated rapid assessment of relative thrombocyte counts in a population of 372 zebrafish larvae by a single operator in less than 3 days. This technique requires basic microscopy equipment and rudimentary programming, lends itself to high throughput analysis, and will enhance future studies of thrombopoiesis in the zebrafish.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140302/1/zeb.2014.1079.pd

    Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia

    No full text
    We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe hyperventilation and cardiophysiologic response. The vhl mutants develop polycythemia with concomitantly increased epo/epor mRNA levels and erythropoietin signaling. In situ hybridizations reveal global up-regulation of both red and white hematopoietic lineages. Hematopoietic tissues are highly proliferative, with enlarged populations of c-myb(+) hematopoietic stem cells and circulating erythroid precursors. Chemical activation of hypoxia-inducible factor signaling recapitulated aspects of the vhl(-/-) phenotype. Furthermore, microarray expression analysis confirms the hypoxic response and hematopoietic phenotype observed in vhl(-/-) embryos. We conclude that VHL participates in regulating hematopoiesis and erythroid differentiation. Injections with human VHLp30 and R200W mutant mRNA demonstrate functional conservation of VHL between mammals and zebrafish at the amino acid level, indicating that vhl mutants are a powerful new tool to study genotype-phenotype correlations in human disease. Zebrafish vhl mutants are the first congenital embryonic viable systemic vertebrate animal model for VHL, representing the most accurate model for VHL-associated polycythemia to date. They will contribute to our understanding of hypoxic signaling, hematopoiesis, and VHL-associated disease progression.

    Mechanisms of nitric oxide-mediated neurogenic,vasodilation in mesenteric resistance arteries of toad, Bufo marinus

    Full text link
    This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure
    corecore