854 research outputs found

    The Generalized Hartle-Hawking Initial State: Quantum Field Theory on Einstein Conifolds

    Get PDF
    Recent arguments have indicated that the sum over histories formulation of quantum amplitudes for gravity should include sums over conifolds, a set of histories with more general topology than that of manifolds. This paper addresses the consequences of conifold histories in gravitational functional integrals that also include scalar fields. This study will be carried out explicitly for the generalized Hartle-Hawking initial state, that is the Hartle-Hawking initial state generalized to a sum over conifolds. In the perturbative limit of the semiclassical approximation to the generalized Hartle-Hawking state, one finds that quantum field theory on Einstein conifolds is recovered. In particular, the quantum field theory of a scalar field on de Sitter spacetime with RP3RP^3 spatial topology is derived from the generalized Hartle-Hawking initial state in this approximation. This derivation is carried out for a scalar field of arbitrary mass and scalar curvature coupling. Additionally, the generalized Hartle-Hawking boundary condition produces a state that is not identical to but corresponds to the Bunch-Davies vacuum on RP3RP^3 de Sitter spacetime. This result cannot be obtained from the original Hartle-Hawking state formulated as a sum over manifolds as there is no Einstein manifold with round RP3RP^3 boundary.Comment: Revtex 3, 31 pages, 4 epsf figure

    Stationary quantum Markov process for the Wigner function

    Full text link
    As a stochastic model for quantum mechanics we present a stationary quantum Markov process for the time evolution of the Wigner function on a lattice phase space Z_N x Z_N with N odd. By introducing a phase factor extension to the phase space, each particle can be treated independently. This is an improvement on earlier methods that require the whole distribution function to determine the evolution of a constituent particle. The process has branching and vanishing points, though a finite time interval can be maintained between the branchings. The procedure to perform a simulation using the process is presented.Comment: 12 pages, no figures; replaced with version accepted for publication in J. Phys. A, title changed, an example adde

    Topological Censorship

    Full text link
    All three-manifolds are known to occur as Cauchy surfaces of asymptotically flat vacuum spacetimes and of spacetimes with positive-energy sources. We prove here the conjecture that general relativity does not allow an observer to probe the topology of spacetime: any topological structure collapses too quickly to allow light to traverse it. More precisely, in a globally hyperbolic, asymptotically flat spacetime satisfying the null energy condition, every causal curve from \scri^- to {\scri}^+ is homotopic to a topologically trivial curve from \scri^- to {\scri}^+. (If the Poincar\'e conjecture is false, the theorem does not prevent one from probing fake 3-spheres).Comment: 12 pages, REVTEX; 1 postscript figure in a separate uuencoded file. Our earlier version (PRL 71, 1486 (1993)) contained a secondary result, mistakenly attributed to Schoen and Yau, regarding ``passive topological censorship'' of a certain class of topologies. As Gregory Burnett has pointed out (gr-qc/9504012), this secondary result is false. The main topological censorship theorem is unaffected by the erro

    Phase Space Tomography of Matter-Wave Diffraction in the Talbot Regime

    Full text link
    We report on the theoretical investigation of Wigner distribution function (WDF) reconstruction of the motional quantum state of large molecules in de Broglie interference. De Broglie interference of fullerenes and as the like already proves the wavelike behaviour of these heavy particles, while we aim to extract more quantitative information about the superposition quantum state in motion. We simulate the reconstruction of the WDF numerically based on an analytic probability distribution and investigate its properties by variation of parameters, which are relevant for the experiment. Even though the WDF described in the near-field experiment cannot be reconstructed completely, we observe negativity even in the partially reconstructed WDF. We further consider incoherent factors to simulate the experimental situation such as a finite number of slits, collimation, and particle-slit van der Waals interaction. From this we find experimental conditions to reconstruct the WDF from Talbot interference fringes in molecule Talbot-Lau interferometry.Comment: 16 pages, 9 figures, accepted at New Journal of Physic

    Gauss sum factorization with cold atoms

    Full text link
    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.Comment: 4 pages, 5 figure

    A Conceptual Model Combination for the Unification of Design and Tolerancing in Robust Design

    Get PDF
    In design engineering, the early consideration of tolerance chains contributes to robust design. For this, a link of design and tolerancing domains is essential. This paper presents a combination of the graph-based tolerancing approach and the Contact and Channel approach to link these domains. The combined approach is applied at a coinage machine. Here it provides detailed insights into state-dependent relations of embodiment and functions, which can improve robustness evaluation of the concept. This approach shows a possibility to bridge the gap between design and tolerancing domains

    Superconducting Analogues of Quantum Optical Phenomena: Macroscopic Quantum Superpositions and Squeezing in a SQUID Ring

    Get PDF
    In this paper we explore the quantum behaviour of a SQUID ring which has a significant Josephson coupling energy. We show that that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilised to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring.Comment: 9 pages, 10 figures, To be submitted to Phys. Rev. A. (changes for referee's and editior's comments - replaced to try to get PDF working

    Operator ordering and causality

    Full text link
    It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner, Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.Comment: References update
    • …
    corecore