11,494 research outputs found

    Comment on "White-Noise-Induced Transport in Periodic Structures"

    Full text link
    In the paper by J.\L uczka {\em et al.} ({\em Europhys. Lett.}, {\bf 31} (1995) 431), the authors reported by rigorous calculation that an additive Poissonian white shot noise can induce a macroscopic current of a dissipative particle in a periodic potential -- even {\em in the absence} of spatial asymmetry of the potential. We argue that their main result is an obvious one caused by the spatially broken symmetry of a probability distribution of the additive noise, unlike the similar result caused by chaotic noise which has a symmetric probability distribution ({\em J.Phys.Soc.Jpn.}, {\bf 63} (1994) 2014).Comment: 2 pages (Latex); submitted to Europhys.Let

    Inverse versus Normal NiAs Structure as High-Pressure Phase of FeO and MnO

    Full text link
    The high-pressure phases of FeO and MnO were studied by the first principles calculations. The present theoretical study predicts that the high-pressure phase of MnO is a metallic normal B8 structure (nB8), while that of FeO should take the inverse B8 structure (iB8). The novel feature of the unique high-pressure phase of stoichiometric FeO is that the system should be a band insulator in the ordered antiferromagnetic (AF) state and that the existence of a band gap leads to special stability of the phase. The observed metallicity of the high-pressure and high-temperature phase of FeO may be caused by the loss of AF order and also by the itinerant carriers created by non-stoichiometry. Analysis of x-ray diffraction experiments provides a further support to the present theoretical prediction for both FeO and MnO. Strong stability of the high-pressure phase of FeO will imply possible important roles in Earth's core.Comment: 7 pages, 3 figures and 1 table; submitted to "Nature

    Coordinate space proton-deuteron scattering calculations including Coulomb force effects

    Full text link
    We present a practical method to solve the proton-deuteron scattering problem at energies above the three-body breakup threshold, in which we treat three-body integral equations in coordinate space accommodating long-range proton-proton Coulomb interactions. The method is examined for phase shift parameters, and then applied to calculations of differential cross sections in elastic and breakup reactions, analyzing powers, etc. with a realistic nucleon-nucleon force and three-nucleon forces. Effects of the Coulomb force and the three-nucleon forces on these observables are discussed in comparing with experimental data.Comment: 15 pages, 14 figures, submitted to PR

    A survey of the three-dimensional high Reynolds number transonic wind tunnel

    Get PDF
    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed

    Affleck-Dine leptogenesis via multiscalar evolution in a supersymmetric seesaw model

    Full text link
    A leptogenesis scenario in a supersymmetric standard model extended with introducing right-handed neutrinos is reconsidered. Lepton asymmetry is produced in the condensate of a right-handed sneutrino via the Affleck-Dine mechanism. The LH_u direction develops large value due to a negative effective mass induced by the right-handed sneutrino condensate through the Yukawa coupling of the right-handed neutrino, even if the minimum during the inflation is fixed at the origin. The lepton asymmetry is nonperturbatively transfered to the LH_u direction by this Yukawa coupling.Comment: 19 pages, 3 figures. Revised version for publication. The model was modified to fix some problem
    corecore