1,272 research outputs found

    How do earth tides affect astronomers?

    Get PDF
    Earth tides affect astronomical observations of the Earth's rotation in the following two ways: (1) verticals are deflected; and (2) the polar moment of inertia of the Earth is changed causing periodic variations in the rotation rate. The diurnal and semidiurnal tides and nutation were examined in periodic variations. Results indicate little change occured in the polar motions. Nutation observations were disturbed rather seriously by the diurnal tides

    Parity violating observables in radiative neutrino pair emission from metastable atoms

    Full text link
    We report on a possibility of measuring parity violating effects in radiative neutrino pair emission from metastable atoms; asymmetric angular distribution of emitted photons from oriented atoms and emergent circular polarization. Their observation, along with the continuous photon energy spectrum which has 6 thresholds, may be interpreted as events being a combined weak and QED process, emission of γνiνj\gamma \nu_i \nu_j in the final state. The method may greatly help to perform neutrino mass spectroscopy using atoms, a systematic determination of the neutrino mass matrix.Comment: 9 pages, 4 figure

    Comparison of the Worst and Best Sum-of-Products Expressions for Multiple-Valued Functions

    Get PDF
    Because most practical logic design algorithms produce irredundant sum-of-products (ISOP) expressions, the understanding of ISOPs is crucial. We show a class of functions for which Morreale-Minato's ISOP generation algorithm produces worst ISOPs (WSOP), ISOPs with the most product terms. We show this class has the property that the ratio of the number of products in the WSOP to the number in the minimum ISOP (MSOP) is arbitrarily large when the number of variables is unbounded. The ramifications of this are significant; care must be exercised in designing algorithms that produce ISOPs. We also show that 2/sup n-1/ is a firm upper bound on the number of product terms in any ISOP for switching functions on n variables, answering a question that has been open for 30 years. We show experimental data and extend our results to functions of multiple-valued variables

    VLBI Observations of Water Masers in the Circumstellar Envelope of IRC+60169

    Full text link
    Water masers around an AGB star, IRC+60169, were observed at four epochs using the Japanese VLBI networks. The distribution of the maser features is limited in a thick-shell region, which has inner and outer expansion velocities of 7 km/s and 14 km/s at radii of 25 mas and 120 mas, respectively. The distribution of the red-shifted features exhibits a ring-like structure, the diameter of which is 30 mas, and corresponds to the inner radius of the maser shell. This implies that dense gas around the star obscures red-shifted emission. Although a position--radial velocity diagram for the maser features is consistent with a spherical shell model, the relative proper motions do not indicate an expansion motion of the shell. A remarkable property has been found that is a possible periodic change of the alignment pattern of water maser spots.Comment: 9 pages including 7 figures, to appear in PASJ, Vol. 54, No.

    EVMDD-based analysis and diagnosis methods of multi-state systems with multi-state components

    Get PDF
    A multi-state system with multi-state components is a model of systems, where performance, capacity, or reliability levels of the systems are represented as states. It usually has more than two states, and thus can be considered as a multi-valued function, called a structure function. Since many structure functions are monotone increasing, their multi-state systems can be represented compactly by edge-valued multi-valued decision diagrams (EVMDDs). This paper presents an analysis method of multi-state systems with multi-state components using EVMDDs. Experimental results show that, by using EVMDDs, structure functions can be represented more compactly than existing methods using ordinary MDDs. Further, EVMDDs yield comparable computation time for system analysis. This paper also proposes a new diagnosis method using EVMDDs, and shows that the proposed method can infer the most probable causes for system failures more efficiently than conventional methods based on Bayesian networks.Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology (MEXT)Hiroshima City UniversityGrant-in Aid No. 2500050 (MEXT)Grant no. 0206 (HCU)Grant in Aid for Scientific Research (JSPS

    Sub-parsec-scale Accleration of the Radio Jet in the Powerful Radio Galaxy NGC 6251

    Get PDF
    In order to investigate the genesis of powerful radio jet, we have mapped the central 10 pc region of the nearby radio galaxy NGC 6251 with a 0.2 pc resolution using Very Long Baseline Interferometer (VLBI) at two radio frequencies, 5 GHz and 15 GHz, we have found the sub-parsec-scale counterjet for the first time in this radio galaxy. This discovery allows us to investigate the jet acceleration based on the relativistic beaming model.Comment: 7 pages with 7 figures. To appear in PASJ, 52, No. 5, Oct. 25, 200

    Development of a low-mass and high-efficiency charged particle detector

    Get PDF
    We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu}. The detector is important to suppress the background with charged particles to the level below the signal branching ratio predicted by the Standard Model (O(1011^{-11})). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than 1.5×1051.5 \times 10^{-5}, which satisfies the requirement of the KOTO experiment determined from simulation studies.Comment: 20 pages, 18 figure

    Quiescent Cores and the Efficiency of Turbulence-Accelerated, Magnetically Regulated Star Formation

    Full text link
    The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in cluster-forming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulence and magnetic fields using numerical simulations, in a sheet-like geometry. We demonstrate that star formation with an efficiency of a few percent can occur over several gravitational collapse times in moderately magnetically subcritical clouds that are supersonically turbulent. The turbulence accelerates star formation by reducing the time for dense core formation. The dense cores produced are predominantly quiescent, with subsonic internal motions. These cores tend to be moderately supercritical. They have lifetimes long compared with their local gravitational collapse time. Some of the cores collapse to form stars, while others disperse away without star formation. In turbulent clouds that are marginally magnetically supercritical, the star formation efficiency is higher, but can still be consistent with the values inferred for nearby embedded clusters. If not regulated by magnetic fields at all, star formation in a multi-Jeans mass cloud endowed with a strong initial turbulence proceeds rapidly, with the majority of cloud mass converted into stars in a gravitational collapse time. The efficiency is formally higher than the values inferred for nearby cluster-forming cores, indicating that magnetic fields are dynamically important even for cluster formation.Comment: submitted to Ap

    An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    Get PDF
    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/cc neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy >>1 GeV was consistent with the MC expectation within 8.2% uncertainty.Comment: 16 pages, 16 figures, submitted to Prog. Theor. Exp. Phy
    corecore