5 research outputs found

    A study of the light travel time effect in short-period MOA eclipsing binaries via eclipse timing

    Full text link
    A sample of 542 eclipsing binaries (EBs)with periods shorter than 2 days was selected from the Microlensing Observations in Astrophysics (MOA) EB catalogue (Li et al.) for eclipse-time variation analysis. For this sample, we were able to obtain a time series from MOA-II spanning 9.5 yr. We discovered 91 EBs, out of the 542 EBs, with detected light-travel-time effect signals suggesting the presence of tertiary companions with orbiting periods from 250 d-28 yr. The frequency of EBs with tertiary companions in our sample increases as the period decreases and reaches a value of 0.65 for contact binaries with periods shorter than 0.3 d. If only those contact binaries with periods < 0.26 d are considered, the frequency even goes to unity. Our results suggest that contact binaries with periods close to the 0.22-d contact binary limit are commonly accompanied by relatively close tertiary companions

    The lowest mass ratio planetary microlens: OGLE 2016-BLG-1195Lb

    Full text link
    We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE 2016-BLG-1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an examination of the survey data. The duration of the planetary signal is ~2.5 h. The measured ratio of the planet mass to its host star is q = 4.2 ± 0.7 × 10-5. We further estimate that the lens system is likely to comprise a cold ~3 Earth mass planet in an ~2 au wide orbit around a 0.2 Solar mass star at an overall distance of 7.1 kpc

    OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary

    Full text link
    We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, Mp= 13.4 ± 0.9 MJ, places it right at the deuterium-burning limit, i.e., the conventional boundary between "planets" and "brown dwarfs." Its existence raises the question of whether such objects are really "planets" (formed within the disks of their hosts) or "failed stars" (low-mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, Mhost= 0.89 ± 0.07 Mo, and the planet has a semimajor axis a ∼ 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period

    Faint-source-star planetary microlensing: The discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

    Full text link
    We report the discovery of a planet - OGLE-2014-BLG-0676Lb- via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10-3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09-1.12+1.02MJ planet orbiting a 0.62-0.22+0.20M⊙host star at a deprojected orbital separation of 4.40-1.46+2.16au. The distance to the lens system is 2.22-0.83+0.96kpc. Planet OGLE- 2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation

    Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes

    No full text
    The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 4.4 days is reported, consistent with the period of 317.3 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems
    corecore