19 research outputs found

    Synthetic oligonucleotides: AFM characterisation and electroanalytical studies

    Get PDF
    One of the most important steps in designing more sensitive and stable DNA based biosensors is the immobilisation procedure of the nucleic acid probes on the transducer surface, while maintaining their conformational flexibility. MAC Mode AFM images in air demonstrated that the oligonucleotide sequences adsorb spontaneously on the electrode surface, showing the existence of pores in the adsorbed layer that reveal big parts of the electrode surface, which enables non-specific adsorption of other molecules on the uncovered areas. The electrostatic immobilisation onto a glassy carbon electrode followed by hybridisation with a complementary sequence and control with a non-complementary sequence was studied using differential pulse voltammetry and electrochemical impedance spectroscopy. Changes in the oxidation currents of guanosine and adenosine were observed after hybridisation events as well as after control experiments. Modification of the double layer capacitance that took place after hybridisation or control experiments showed that non-specific adsorption of complementary or non-complementary sequences occur allowing the formation of a mixed multilayer.http://www.sciencedirect.com/science/article/B6W72-4GP1VK1-1/1/c44e3d2a4c722d5cec59a4d09d0a744

    AFM and electroanalytical studies of synthetic oligonucleotide hybridization

    Get PDF
    The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN.http://www.sciencedirect.com/science/article/B6TFC-4CYNVTG-7/1/9dd6257bfec8e07f1a15905be07dbd1

    AFM and electroanalytical studies of synthetic oligonucleotide hybridization

    Get PDF
    Abstract The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN

    AFM and electroanalytical studies of synthetic oligonucleotide hybridization

    Get PDF
    The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN.http://www.sciencedirect.com/science/article/B6TFC-4CYNVTG-7/1/9dd6257bfec8e07f1a15905be07dbd1

    Electrochemical sensing of the behaviour of oligonucleotide lipoplexes at charged interfaces

    Get PDF
    Complexes between short oligodeoxynucleotides (ODN) with a variable dGxdCy base composition and liposomes composed of the cationic lipid DOTAP (ODN lipoplexes) were studied by differential pulse voltammetry at a glassy carbon electrode. Since lipoplexes are spontaneously formed by electrostatic interactions, the objective of the voltammetric study was to investigate their behaviour at the electrode surface/solution interface. It was verified that the peak current in the voltammograms for ODN lipoplexes was due to guanosine oxidation and that it was influenced both by the applied adsorption potential and the lipoplex (±) charge ratio used. It was found that for low ODN lipoplexes (±) charge ratios the peak current obtained was enhanced when compared to that registered with free ODN for the same concentration. This allowed a higher sensitivity in the determination of ODN by differential pulse voltammetry and a limit of detection of 5.5 ng/mL was achieved. A model that explains the organisation of ODN lipoplexes at the electrode surface/solution interface is proposed. The electrochemical results presented account for a better physicochemical characterisation of lipoplexes at charged interfaces, which can be important for the understanding and development of gene therapy vectors based on ODN lipoplexes.http://www.sciencedirect.com/science/article/B6TFC-4CYNVTG-4/1/431916a28ef62a0aab03cde700cdf11

    The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding.

    No full text
    All DNA (cytosine-5)-methyltransferases contain a single conserved cysteine. It has been proposed that this cysteine initiates catalysis by attacking the C6 of cytosine and thereby activating the normally inert C5 position. We show here that substitutions of this cysteine in the E. coli methylase M. EcoRII with either serine or tryptophan results in a complete loss of ability to transfer methyl groups to DNA. Interestingly, mutants with either serine or glycine substitution bind tightly to substrate DNA. These mutants resemble the wild-type enzyme in that their binding to substrate is not eliminated by the presence of non-specific DNA in the reaction, it is sensitive to methylation status of the substrate and is stimulated by an analog of the methyl donor. Hence the conserved cysteine is not essential for the specific stable binding of the enzyme to its substrate. However, substitution of the cysteine with the bulkier tryptophan does reduce DNA binding. We also report here a novel procedure for the synthesis of DNA containing 5-fluorocytosine. Further, we show that a DNA substrate for M. EcoRII in which the target cytosine is replaced by 5-fluorocytosine is a mechanism-based inhibitor of the enzyme and that it forms an irreversible complex with the enzyme. As expected, this modified substrate does not form irreversible complexes with the mutants

    Synthesis of -Diketone DNA Derivatives for Affinity Modification of Proteins

    No full text
    Diketone DNA derivatives have been proposed to modify the guanidine group of Arg in proteins. The -diketo group at the C2' atom of the sugar phosphate moiety has been introduced in DNA by acylation of oligonucleotide precursors, i.e., DNA fragments containing 2'-amino-2'-deoxyuridine, which have been synthesized by the chemical automatic synthesis. Water-soluble N-3-(dimethylamino)propyl]-N-ethylcarbodiimide (EDC) and 4,6-dioxoheptanoic acid have been used in the reaction. The ability of oligodeoxyribonucleotides containing the 2'--diketo group to react with guanidine, N-Boc-L-arginine, and N-Dns-L-arginine has been demonstrated. The introduction of this modification into one of the strands of the 15-base pair DNA duplex has been shown to lead to its destabilization. The conjugate formation of MutS and MutL proteins from the E.coli mismatch repair system with 17-base pair DNA duplexes containing the 2'-deoxy-2'-(4,6-dioxoheptylamido)uridine residue has been detected for the first time. To increase the selectivity of the DNA ligands containing the -diketo group in the reaction with the Arg residues of proteins, we have proposed to treat the reaction mixture with hydroxylamine. This treatment leads to the cleavage of Schiff bases, which are formed with the involvement of lysine residues
    corecore