26,089 research outputs found

    "Third places" and social interaction in deprived neighbourhoods in Great Britain

    Get PDF
    This paper explores social interaction in local ‘public’ social spaces such as local shops, pubs, cafĂ©s, and community centres in deprived neighbourhoods. More specifically, it examines the importance, role and function of these places, which have been described by Oldenberg and Brissett (Qual Sociol 5(4):265–284, 1982), Oldenburg (Urban design reader. Architectural Place, Oxford, 2007) as being “third places” of social interaction after the home (first) and workplace (second). It does so by drawing on data gleaned from in-depth interviews with 180 residents in six deprived areas neighbourhoods across Great Britain, conducted as part of a study of the links between poverty and place funded by the Joseph Rowntree Foundation. The paper notes that local third places are an important medium for social interaction in these areas, although their importance appears to vary by population group. It notes that shops appear to be a particularly important social space. It also identifies some of the barriers to social interaction within third places and concludes by highlighting some of the key implications for policy to emerge from the research

    The String Theory Approach to Generalized 2D Yang-Mills Theory

    Full text link
    We calculate the partition function of the SU(N)SU(N) ( and U(N)U(N)) generalized YM2YM_2 theory defined on an arbitrary Riemann surface. The result which is expressed as a sum over irreducible representations generalizes the Rusakov formula for ordinary YM_2 theory. A diagrammatic expansion of the formula enables us to derive a Gross-Taylor like stringy description of the model. A sum of 2D string maps is shown to reproduce the gauge theory results. Maps with branch points of degree higher than one, as well as ``microscopic surfaces'' play an important role in the sum. We discuss the underlying string theory.Comment: TAUP-2182-94, 53 pages of LaTeX and 5 uuencoded eps figure

    Kaon squeeze-out in heavy ion reactions

    Get PDF
    The squeeze-out phenomenon of K+K^+ and K−K^- mesons, i.e. the azimuthal asymmetry of K+K^+ and K−K^- mesons emitted at midrapidity in heavy ion reactions, is investigated for beam energies of 1-2 A.GeV. It is found that the squeeze-out signal is strongly affected by in-medium potentials of these mesons. The repulsive K+K^+-nucleus potential gives rise to a pronounced out-of-plane emission of K+K^+'s at midrapidity. With the K+K^+ potential we reproduce well the experimental data of the K+K^+ azimuthal distribution. It is found that the attractive K−K^--nucleus potential cancels to a large extent the influence of rescattering and reabsorption of the K−K^- mesons on the projectile and target residuals (i.e. shadowing). This results in an azimuthally isotropic emission of the midrapidity K−K^- mesons with transverse momentum up to 0.8 GeV/c. Since it is well accepted that the shadowing alone would lead to a significant out-of-plane preference of particle emission, in particular at high transverse momenta, the disappearance of the out-of-plane preference for the K−K^- mesons can serve as an unambiguous signal of the attractive K−K^- potential. We also apply a covariant formalism of the kaon dynamics to the squeeze-out phenomenon. Discrepancies between the theory and the experiments and possible solutions are discussed.Comment: 24 pages Latex using Elsevier style, 7 PS figures, accepted for publication in Euro. Phys. Jour.

    Scalable reconstruction of density matrices

    Full text link
    Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.Comment: 9 pages, 5 figures, replaced with published versio

    Magneto-optical imaging of voltage-controlled magnetization reorientation

    Full text link
    We study the validity and limitations of a macrospin model to describe the voltage-controlled manipulation of ferromagnetic magnetization in nickel thin film/piezoelectric actuator hybrid structures. To this end, we correlate simultaneously measured spatially resolved magneto-optical Kerr effect imaging and integral magnetotransport measurements at room temperature. Our results show that a macrospin approach is adequate to model the magnetoresistance as a function of the voltage applied to the hybrid, except for a narrow region around the coercive field - where the magnetization reorientation evolves via domain effects. Thus, on length scales much larger than the typical magnetic domain size, the voltage control of magnetization is well reproduced by a simple Stoner-Wohlfarth type macrospin model

    RealTimeFrame – A Real Time Processing Framework for Medical Video Sequences

    Get PDF
    Imaging technology is highly important in today’s medical environments. It provides information upon which the accuracy of the diagnosis and consequently the wellbeing of the patient rely. Increasing the quality and significance of medical image data is therefore one the aims of scientific research and development. We introduce an integrated hardware and software framework for real time image processing in medical environments, which we call RealTimeFrame. Our project is designed to offer flexibility, easy expandability and high performance. We use standard personal computer hardware to run our multithreaded software. A frame grabber card is used to capture video signals from medical imaging systems. A modular, user-defined process chain performs arbitrary manipulations on the image data. The graphical user interface offers configuration options and displays the processed image in either window or full screen mode. Image source and processing routines are encapsulated in dynamic library modules for easy functionality extension without recompilation of the entire software framework. Documented template modules for sources and processing steps are part of the software’s source code

    Comparison of Josephson vortex flow transistors with different gate line configurations

    Full text link
    We performed numerical simulations and experiments on Josephson vortex flow transistors based on parallel arrays of YBa2Cu3O(7-x) grain boundary junctions with a cross gate-line allowing to operate the same devices in two different modes named Josephson fluxon transistor (JFT) and Josephson fluxon-antifluxon transistor (JFAT). The simulations yield a general expression for the current gain vs. number of junctions and normalized loop inductance and predict higher current gain for the JFAT. The experiments are in good agreement with simulations and show improved coupling between gate line and junctions for the JFAT as compared to the JFT.Comment: 3 pages, 6 figures, accept. for publication in Appl. Phys. Let

    Time-dependent density functional theory: Past, present, and future

    Full text link
    Time-dependent density functional theory (TDDFT) is presently enjoying enormous popularity in quantum chemistry, as a useful tool for extracting electronic excited state energies. This article discusses how TDDFT is much broader in scope, and yields predictions for many more properties. We discuss some of the challenges involved in making accurate predictions for these properties.Comment: 12 pages, 4 figure
    • 

    corecore