42 research outputs found

    Crystal-field mediated electronic transitions of EuS up to 35 GPa

    Get PDF
    An advanced experimental and theoretical model to explain the correlation between the electronic and local structure of Eu2+ in two different environments within a same compound, EuS, is presented. EuX monochalcogenides (X: O, S, Se, Te) exhibit anomalies in all their properties around 14 GPa with a semiconductor to metal transition. Although it is known that these changes are related to the 4f75d0 → 4f65d1 electronic transition, no consistent model of the pressure-induced modifications of the electronic structure currently exists. We show, by optical and x-ray absorption spectroscopy, and by ab initio calculations up to 35 GPa, that the pressure evolution of the crystal field plays a major role in triggering the observed electronic transitions from semiconductor to the half-metal and finally to the metallic state

    Planck 2015 results I. Overview of products and scientific results

    Get PDF
    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds

    Characterization of the urease gene cluster from Rhizobium leguminosarum bv. viciae

    No full text
    Moderate levels of urease activity (ca. 300 mU mg-1) were detected in Rhizobium leguminosarum bv. viciae UPM791 vegetative cells. This activity did not require urea for induction and was partially repressed by the addition of ammonium into the medium. Lower levels of urease activity (ca. 100 mU mg-1) were detected also in pea bacteroids. A DNA region of ca. 9 kb containing the urease structural genes (ureA, ureB and ureC), accessory genes (ureD, ureE, ureF, and ureG), and five additional ORFs (orf83, orf135, orf207, orf223, and orf287) encoding proteins of unknown function was sequenced. Three of these ORFs (orf83, orf135 and orf207) have a homologous counterpart in a gene cluster from Sinorhizobium meliloti, reported to be involved in urease and hydrogenase activities. R. leguminosarum mutant strains carrying Tn5 insertions within this region exhibited a urease-negative phenotype, but induced wild-type levels of hydrogenase and nitrogenase activities in bacteroids. orf287 encodes a potential transmembrane protein with a C-terminal GGDEF domain. A mutant affected in orf287 exhibited normal levels of urease activity in culture cells. Experiments aimed at cross-complementing Ni-binding proteins required for urease and hydrogenase synthesis (UreE and HypB, respectively) indicated that these two proteins are not functionally interchangeable in R. leguminosarum

    Hydrogenase genes are uncommon and highly conserved in Rhizobium leguminosarum bv. viciae

    No full text
    A screening for hydrogen uptake (hup) genes in Rhizobium leguminosarum bv. viciae isolates from different locations within Spain identified no Hup+ strains, confirming the scarcity of the Hup trait in R. leguminosarum. However, five new Hup+ strains were isolated from Ni-rich soils from Italy and Germany. The hup gene variability was studied in these strains and in six available strains isolated from North America. Sequence analysis of three regions within the hup cluster showed an unusually high conservation among strains, with only 0.5–0.6% polymorphic sites, suggesting that R. leguminosarum acquired hup genes de novo in a very recent event
    corecore