5 research outputs found

    Self-diffusion of adatoms, dimers, and vacancies on Cu(100)

    Full text link
    We use ab initio static relaxation methods and semi-empirical molecular-dynamics simulations to investigate the energetics and dynamics of the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that the dynamical energy barriers for diffusion are well approximated by the static, 0 K barriers and that prefactors do not depend sensitively on the species undergoing diffusion. The ab initio barriers are observed to be significantly lower when calculated within the generalized-gradient approximation (GGA) rather than in the local-density approximation (LDA). Our calculations predict that surface diffusion should proceed primarily via the diffusion of vacancies. Adatoms are found to migrate most easily via a jump mechanism. This is the case, also, of dimers, even though the corresponding barrier is slightly larger than it is for adatoms. We observe, further, that dimers diffuse more readily than they can dissociate. Our results are discussed in the context of recent submonolayer growth experiments of Cu(100).Comment: Submitted to the Physical Review B; 15 pages including postscript figures; see also http://www.centrcn.umontreal.ca/~lewi

    First-principles study of the Na(110) surface

    No full text

    Selbstkonsistente Pseudopotentialrechnungen fuer Metalle mit schmalen d-Baendern Bulk- und Oberflaecheneigenschaften

    No full text
    SIGLEAvailable from TIB Hannover: ZA 5141(4858) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Surface Phonons: Theoretical Methods and Results

    No full text
    peer reviewedThe theoretical methods currently in use for the calculation of surface phononsurface phonon dispersion curves and how they have evolved from the phenomenological force-constant models to the present day first principles theories are discussed. A selection of paradigmatic examples for the different classes of crystal surfaces is presented with comparisons to the experimental data obtained from helium atom scattering or electron energy-loss spectroscopy. © 2020, Springer Nature Switzerland AG
    corecore