194 research outputs found
Asymmetric transmission of linearly polarized light at optical metamaterials
We experimentally demonstrate a three-dimensional chiral optical metamaterial
that exhibits an asymmetric transmission for forwardly and backwardly
propagating linearly polarized light. The observation of this novel effect
requires a metamaterial composed of three-dimensional chiral metaatoms without
any rotational symmetry. Our analysis is supported by a systematic
investigation of the transmission matrices for arbitrarily complex, lossy media
that allows deriving a simple criterion for asymmetric transmission in an
arbitrary polarization base. Contrary to physical intuition, in general the
polarization eigenstates in such three-dimensional and low-symmetry
metamaterials do not obey fxed relations and the associated transmission
matrices cannot be symmetrized
Approaching the Lambertian limit in randomly textured thin-film solar cells
The Lambertian limit for solar cells is a benchmark for evaluating their efficiency. It has been shown that the performance of either extremely thick or extremely thin solar cells can be driven close to this limit by using an appropriate photon management. Here we show that this is likewise possible for realistic, practically relevant thin-film solar cells based on amorphous silicon. Most importantly, we achieve this goal by relying on random textures already incorporated into state-of-the-art superstrates; with the only subtlety that their topology has to be downscaled to typical feature sizes of about 100 nm
Decomposing the scattered field of two-dimensional metaatoms into multipole contributions
We introduce a technique to decompose the scattered near field of
two-dimensional arbitrary metaatoms into its multipole contributions. To this
end we expand the scattered field upon plane wave illumination into cylindrical
harmonics as known from Mie theory. By relating these cylin- drical harmonics
to the field radiated by Cartesian multipoles, the contribution of the lowest
order electric and magnetic multipoles can be identified. Revealing these
multipoles is essential for the design of metamaterials because they largely
determine the character of light propagation. In par- ticular, having this
information at hand it is straightforward to distinguish between effects that
result either from the arrangement of the metaatoms or from their particular
design
Rugate filter for light-trapping in solar cells
We suggest a design for a coating that could be applied on top of any solar cell having at least one diffusing surface. This coating acts as an angle and wavelength selective filter, which increases the average path length and absorptance at long wavelengths without altering the solar cell performance at short wavelengths. The filter design is based on a continuous variation of the refractive index in order to minimize undesired reflection losses. Numerical procedures are used to optimize the filter for a 10 μm thick monocrystalline silicon solar cell, which lifts the efficiency above the Auger limit for unconcentrated illumination. The feasibility to fabricate such filters is also discussed, considering a finite available refractive index range
Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering
We report that rhomb-shaped metal nanoantenna arrays support multiple
plasmonic resonances, making them favorable bio-sensing substrates. Besides the
two localized plasmonic dipole modes associated with the two principle axes of
the rhombi, the sample supports an additional grating-induced surface plasmon
polariton resonance. The plasmonic properties of all modes are carefully
studied by far-field measurements together with numerical and analytical
calculations. The sample is then applied to surface-enhanced Raman scattering
measurements. It is shown to be highly efficient since two plasmonic resonances
of the structure were simultaneously tuned to coincide with the excitation and
the emission wave- length in the SERS experiment. The analysis is completed by
measuring the impact of the polarization angle on the SERS signal.Comment: 13 pages, 5 figure
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
We investigate experimentally and theoretically the third harmonic generated
by a double-layer fishnet metamaterial. To unambiguously disclose most notably
the influence of the magnetic resonance, the generated third harmonic was
measured as a function of the angle of incidence. It is shown experimentally
and numerically that when the magnetic resonance is excited by pump beam, the
angular dependence of the third harmonic signal has a local maximum at an
incidence angle of {\theta} \simeq 20{\deg}. This maximum is shown to be a
fingerprint of the antisymmetric distribution of currents in the gold layers.
An analytical model based on the nonlinear dynamics of the electrons inside the
gold shows excellent agreement with experimental and numerical results. This
clearly indicates the difference in the third harmonic angular pattern at
electric and magnetic resonances of the metamaterial.Comment: 7 pages, 5 figure
Relating localized nanoparticle resonances to an associated antenna problem
We conceptually unify the description of resonances existing at metallic
nanoparticles and optical nanowire antennas. To this end the nanoantenna is
treated as a Fabry-Perot resonator with arbitrary semi-nanoparticles forming
the terminations. We show that the frequencies of the quasi-static dipolar
resonances of these nanoparticles coincide with the frequency where the phase
of the complex reflection coefficient of the fundamental propagating plasmon
polariton mode at the wire termination amounts to . The lowest order
Fabry-Perot resonance of the optical wire antenna occurs therefore even for a
negligible wire length. This approach can be used either to easily calculate
resonance frequencies for arbitrarily shaped nanoparticles or for tuning the
resonance of nanoantennas by varying their termination.Comment: Submitted to Phys. Rev.
Multipole nonlinearity of metamaterials
We report on the linear and nonlinear optical response of metamaterials
evoked by first and second order multipoles. The analytical ground on which our
approach bases permits for new insights into the functionality of
metamaterials. For the sake of clarity we focus here on a key geometry, namely
the split-ring resonator, although the introduced formalism can be applied to
arbitrary structures. We derive the equations that describe linear and
nonlinear light propagation where special emphasis is put on second harmonic
generation. This contribution basically aims at stretching versatile and
existing concepts to describe light propagation in nonlinear media towards the
realm of metamaterials.Comment: 7 pages, 3 figure
- …