23,594 research outputs found

    Surprises on the Way from 1D to 2D Quantum Magnets: the Novel Ladder Materials

    Full text link
    One way of making the transition between the quasi-long range order in a chain of S=1/2 spins coupled antiferromagnetically and the true long range order that occurs in a plane, is by assembling chains to make ladders of increasing width. Surprisingly this crossover between one and two dimensions is not at all smooth. Ladders with an even number of legs have purely short range magnetic order and a finite energy gap to all magnetic excitations. Predictions of this novel groundstate have now been verified experimentally. Holes doped into these ladders are predicted to pair, and possibly superconduct.Comment: Review Article, Science, TeX file, 18 pages, 6 figures available upon reques

    A Simple Model for the Checkerboard Pattern of Modulated Hole Densities in Underdoped Cuprates

    Full text link
    A simple model is proposed as a possible explanation for the checkerboard pattern of modulations in the hole density observed in recent tunneling experiments on underdoped cuprates. Two assumptions are made; first, an enhanced hole density near the acceptor dopants and secondly short range correlations in the positions of these dopants caused by their electrostatic and anisotropic elastic interactions. Together these can lead to a structure factor in qualitative agreement with experiment.Comment: 4 pages, 4 figures; Fig.3 and Fig.4(c) added, typos corrected, references adde

    Interband proximity effect and nodes of superconducting gap in Sr2RuO4

    Full text link
    The power-law temperature dependences of the specific heat, the nuclear relaxation rate, and the thermal conductivity suggest the presence of line nodes in the superconducting gap of Sr2RuO4. These recent experimental observations contradict the scenario of a nodeless (k_x+ik_y)-type superconducting order parameter. We propose that interaction of superconducting order parameters on different sheets of the Fermi surface is a key to understanding the above discrepancy. A full gap exists in the active band, which drives the superconducting instability, while line nodes develop in passive bands by interband proximity effect.Comment: 4 pages, 1 figur

    Multiexciton molecules in the hexaborides

    Full text link
    We investigate multiexciton bound states in a semiconducting phase of divalent hexaborides. Due to three degenerate valleys in both the conduction and valence bands the binding energy of a 6-exciton molecule is greatly enhanced by the shell effect. The ground state energies of multiexciton molecules are calculated using the density functional formalism. We also show that charged impurities stabilize multiexciton complexes leading to condensation of localized excitons. These complexes can act as nucleation centers of local moments.Comment: RevTEX, 7 pages with 3 figure

    Pairing and Excitation Spectrum in doped t-J Ladders

    Full text link
    Exact diagonalization studies for a doped t-J ladder (or double chain) show hole pairing in the ground state. The excitation spectrum separates into a limited number of quasiparticles which carry charge +∣e∣+|e| and spin 12{1 \over 2} and a triplet mode. At half-filling the former vanish but the latter evolves continuously into the triplet band of the spin liquid. At low doping the quasiparticles form a dilute Fermi gas with a strong attraction but simultaneously the Fermi wavevector, as would be measured in photoemission, is large.Comment: 10 pages and 4 PostScript figures, RevTeX 3.0, ETH-TH/94-0

    Charge profile of surface doped C60

    Full text link
    We study the charge profile of a C60-FET (field effect transistor) as used in the experiments of Schoen, Kloc and Batlogg. Using a tight-binding model, we calculate the charge profile treating the Coulomb interaction in a mean-field approximation. The charge profile behaves similarly to the case of a continuous space-charge layer, in particular it is confined to a single interface layer for doping higher than ~0.3 electron (or hole) per C60 molecule. The morahedral disorder of the C60 molecules smoothens the structure in the density of states.Comment: 6 pages, 9 figure

    Flow to strong coupling in the two-dimensional Hubbard model

    Full text link
    We extend the analysis of the renormalization group flow in the two-dimensional Hubbard model close to half-filling using the recently developed temperature flow formalism. We investigate the interplay of d-density wave and Fermi surface deformation tendencies with those towards d-wave pairing and antiferromagnetism. For a ratio of next nearest to nearest neighbor hoppings, t'/t=-0.25, and band fillings where the Fermi surface is inside the Umklapp surface, only the d-pairing susceptibility diverges at low temperatures. When the Fermi surface intersects the Umklapp surface close to the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a weaker extent, d-wave Fermi surface deformation susceptibilities grow together when the interactions flow to strong coupling. We interpret these findings as indications for a non-trivial strongly coupled phase with short-ranged superconducting and antiferromagnetic correlations, in close analogy with the spin liquid ground state in the well-understood two-leg Hubbard ladder.Comment: 8 pages, to appear in European Physical Journal

    How fast do Jupiters grow? Signatures of the snowline and growth rate in the distribution of gas giant planets

    Get PDF
    We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that suggests planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.Comment: 7 pages, 6 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    • …
    corecore