28 research outputs found

    Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    Full text link

    Analysis of biomass residues potential for electrical energy generation in Albania

    No full text
    This paper presents the status of research of biomass potential for producing electrical energy in Albania. Biomass potential can be generated by different sources. Three types of biomass energy sources are included: dedicated bioenergy crops, agricultural and forestry residues and waste. The technical electrical energy considered in this study was calculated with two converting techniques: (1) combustion of the feedstock directly in an incinerator and then driving a steam generator for producing electrical energy and (2) production of biogas from an anaerobic digester and running a turbine for electrical energy generation. Analysis of the potential biomass resource quantity was computed according to statistical reports, literature review and personal investigations. From the biomass residue potential was calculated in terms of the theoretical energy content (total heating value) of every type of feedstock and the technical energy content for every Albanian prefecture according to different burning processes and different operation efficiencies. Results show that Albania was producing around of 4.8 million tons of dry biomass in year 2005. The theoretical energy content of biomass in Albania was 11.6 million MWh/a, and the technical electrical energy production was 3 million MWh/a. The electrical energy produced is equivalent to 45.8% of total Albania Country annual electrical consumption. In Albania Country, residues from agriculture, forest and urban waste represent a large biomass potential. By actual conversion techniques it is possible to generate one third of the theoretical heat energy into technical electrical energy. The use of heat from cogeneration plants depends on local heat provision conditions. It is another big energy potential but excluded in this study, so the rest of energy is considered as heat losses.Renewable energy Bioenergy Electrical energy Technical potential

    Remodeling and Repair In Rhinosinusitis

    No full text
    Remodeling refers to the development of specific but potentially irreversible structural changes in tissue. Caucasian eosinophilic chronic rhinosinusitis (CRS) with polyps associated or not with cystic fibrosis was discriminated by edema from CRS without nasal polyps, characterized by extensive fibrotic fields. However, changes in epithelial and extracellular matrix structures are common findings in all types of chronic inflammatory diseases of upper airways, but rarely specific and highly variable in extend. Recent studies have shown that remodeling in CRS appears to occur in parallel, rather than purely subsequent to inflammation. Furthermore,some preferential remodeling associations can be recognized. Tremendous efforts have been put in research on coagulation factors,cytokines,growthfactors,and proteases supporting all phases of upper airway remodeling. The current exploration of other CRS sub-groups and of the particular link with concomitant asthma aims to optimize the classification of CRS and its staging modes and to develop novel therapies
    corecore