233 research outputs found
A geometric approach to an equation of J. D’Alembert
By using a geometric framework of PDE's
we prove that the set of solutions of the D'Alembert equation is
larger than the set of smooth functions of two variables
of the form .
The set of -dimensional integral manifolds of PDE
properly contains the ones representable by graphs of -jet-derivatives of functions expressed in the form .} A generalization of this result to functions of more than
two variables is sketched too
Asymptotic stability of the Cauchy and Jensen functional equations
The aim of this note is to investigate the asymptotic stability behaviour of
the Cauchy and Jensen functional equations. Our main results show that if these
equations hold for large arguments with small error, then they are also valid
everywhere with a new error term which is a constant multiple of the original
error term. As consequences, we also obtain results of hyperstability character
for these two functional equations
An Introduction to Hyperbolic Barycentric Coordinates and their Applications
Barycentric coordinates are commonly used in Euclidean geometry. The
adaptation of barycentric coordinates for use in hyperbolic geometry gives rise
to hyperbolic barycentric coordinates, known as gyrobarycentric coordinates.
The aim of this article is to present the road from Einstein's velocity
addition law of relativistically admissible velocities to hyperbolic
barycentric coordinates along with applications.Comment: 66 pages, 3 figure
Gyrations: The Missing Link Between Classical Mechanics with its Underlying Euclidean Geometry and Relativistic Mechanics with its Underlying Hyperbolic Geometry
Being neither commutative nor associative, Einstein velocity addition of
relativistically admissible velocities gives rise to gyrations. Gyrations, in
turn, measure the extent to which Einstein addition deviates from commutativity
and from associativity. Gyrations are geometric automorphisms abstracted from
the relativistic mechanical effect known as Thomas precession
- …