785 research outputs found

    Evolution systems for non-linear perturbations of background geometries

    Full text link
    The formulation of the initial value problem for the Einstein equations is at the heart of obtaining interesting new solutions using numerical relativity and still very much under theoretical and applied scrutiny. We develop a specialised background geometry approach, for systems where there is non-trivial a priori knowledge about the spacetime under study. The background three-geometry and associated connection are used to express the ADM evolution equations in terms of physical non-linear deviations from that background. Expressing the equations in first order form leads naturally to a system closely linked to the Einstein-Christoffel system, introduced by Anderson and York, and sharing its hyperbolicity properties. We illustrate the drastic alteration of the source structure of the equations, and discuss why this is likely to be numerically advantageous.Comment: 12 pages, 3 figures, Revtex v3.0. Revised version to appear in Physical Review

    Hyperboloidal evolution of test fields in three spatial dimensions

    Full text link
    We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.Comment: 10 pages, 8 figure

    On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation

    Get PDF
    We discuss the analytical determination of the location of the Last Stable Orbit (LSO) in circular general relativistic orbits of two point masses. We use several different ``resummation methods'' (including new ones) based on the consideration of gauge-invariant functions, and compare the results they give at the third post-Newtonian (3PN) approximation of general relativity. Our treatment is based on the 3PN Hamiltonian of Jaranowski and Sch\"afer. One of the new methods we introduce is based on the consideration of the (invariant) function linking the angular momentum and the angular frequency. We also generalize the ``effective one-body'' approach of Buonanno and Damour by introducing a non-minimal (i.e. ``non-geodesic'') effective dynamics at the 3PN level. We find that the location of the LSO sensitively depends on the (currently unknown) value of the dimensionless quantity \oms which parametrizes a certain regularization ambiguity of the 3PN dynamics. We find, however, that all the analytical methods we use numerically agree between themselves if the value of this parameter is \oms\simeq-9. This suggests that the correct value of \oms is near -9 (the precise value \oms^*\equiv-{47/3}+{41/64}\pi^2=-9.3439... seems to play a special role). If this is the case, we then show how to further improve the analytical determination of various LSO quantities by using a ``Shanks'' transformation to accelerate the convergence of the successive (already resummed) PN estimates.Comment: REVTeX, 25 pages, 3 figures, submitted to Phys. Rev.

    Einstein boundary conditions for the 3+1 Einstein equations

    Full text link
    In the 3+1 framework of the Einstein equations for the case of vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space-derivatives of the intrinsic metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields.Comment: Revtex 4, 6 pages, text and references added, typos corrected, to appear in Phys. Rev.

    On the Performance Prediction of BLAS-based Tensor Contractions

    Full text link
    Tensor operations are surging as the computational building blocks for a variety of scientific simulations and the development of high-performance kernels for such operations is known to be a challenging task. While for operations on one- and two-dimensional tensors there exist standardized interfaces and highly-optimized libraries (BLAS), for higher dimensional tensors neither standards nor highly-tuned implementations exist yet. In this paper, we consider contractions between two tensors of arbitrary dimensionality and take on the challenge of generating high-performance implementations by resorting to sequences of BLAS kernels. The approach consists in breaking the contraction down into operations that only involve matrices or vectors. Since in general there are many alternative ways of decomposing a contraction, we are able to methodically derive a large family of algorithms. The main contribution of this paper is a systematic methodology to accurately identify the fastest algorithms in the bunch, without executing them. The goal is instead accomplished with the help of a set of cache-aware micro-benchmarks for the underlying BLAS kernels. The predictions we construct from such benchmarks allow us to reliably single out the best-performing algorithms in a tiny fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1

    Spin effects in gravitational radiation backreaction II. Finite mass effects

    Get PDF
    A convenient formalism for averaging the losses produced by gravitational radiation backreaction over one orbital period was developed in an earlier paper. In the present paper we generalize this formalism to include the case of a closed system composed from two bodies of comparable masses, one of them having the spin S. We employ the equations of motion given by Barker and O'Connell, where terms up to linear order in the spin (the spin-orbit interaction terms) are kept. To obtain the radiative losses up to terms linear in the spin, the equations of motion are taken to the same order. Then the magnitude L of the angular momentum L, the angle kappa subtended by S and L and the energy E are conserved. The analysis of the radial motion leads to a new parametrization of the orbit. From the instantaneous gravitational radiation losses computed by Kidder the leading terms and the spin-orbit terms are taken. Following Apostolatos, Cutler, Sussman and Thorne, the evolution of the vectors S and L in the momentary plane spanned by these vectors is separated from the evolution of the plane in space. The radiation-induced change in the spin is smaller than the leading-order spin terms in the momentary angular momentum loss. This enables us to compute the averaged losses in the constants of motion E, L and L_S=L cos kappa. In the latter, the radiative spin loss terms average to zero. An alternative description using the orbital elements a,e and kappa is given. The finite mass effects contribute terms, comparable in magnitude, to the basic, test-particle spin terms in the averaged losses.Comment: 12 pages, 1 figure, Phys.Rev.D15, March, 199

    Effective one-body approach to general relativistic two-body dynamics

    Full text link
    We map the general relativistic two-body problem onto that of a test particle moving in an effective external metric. This effective-one-body approach defines, in a non-perturbative manner, the late dynamical evolution of a coalescing binary system of compact objects. The transition from the adiabatic inspiral, driven by gravitational radiation damping, to an unstable plunge, induced by strong spacetime curvature, is predicted to occur for orbits more tightly bound than the innermost stable circular orbit in a Schwarzschild metric of mass M = m1 + m2. The binding energy, angular momentum and orbital frequency of the innermost stable circular orbit for the time-symmetric two-body problem are determined as a function of the mass ratio.Comment: 52 pages, RevTex, epsfig, 8 figure

    Coalescence of Two Spinning Black Holes: An Effective One-Body Approach

    Full text link
    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. The combination of the effective one-body approach, and of a Pad\'e definition of some crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6GM/c26 GM / c^2. We discuss the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and, of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but not all) of the parameter space of two spinning holes the effective one-body approach gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating of the text, clarifications added and inclusion of a few new reference

    Improved filters for gravitational waves from inspiralling compact binaries

    Full text link
    The order of the post-Newtonian expansion needed, to extract in a reliable and accurate manner the fully general relativistic gravitational wave signal from inspiralling compact binaries, is explored. A class of approximate wave forms, called P-approximants, is constructed based on the following two inputs: (a) The introduction of two new energy-type and flux-type functions e(v) and f(v), respectively, (b) the systematic use of Pade approximation for constructing successive approximants of e(v) and f(v). The new P-approximants are not only more effectual (larger overlaps) and more faithful (smaller biases) than the standard Taylor approximants, but also converge faster and monotonically. The presently available O(v/c)^5-accurate post-Newtonian results can be used to construct P-approximate wave forms that provide overlaps with the exact wave form larger than 96.5% implying that more than 90% of potential events can be detected with the aid of P-approximants as opposed to a mere 10-15 % that would be detectable using standard post-Newtonian approximants.Comment: Latex ([prd,aps,eqsecnum,epsf]{revtex}), 40 pages including 12 encapsulated figures. (The paper, together with all the figures and tables is available from ftp://carina.astro.cf.ac.uk/pub/incoming/sathya/dis97.uu
    • …
    corecore