46 research outputs found

    Naked-eye detection of morphine by Au@Ag nanoparticles-based colorimetric chemosensors

    Get PDF
    In this study, we report a novel and facile colorimetric assay based on silver citrate-coated Au@Ag nanoparticles (Au@AgNPs) as a chemosensor for the naked-eye detection of morphine (MOR). The developed optical sensing approach relied on the aggregation of Au@Ag NPs upon exposure to morphine, which led to an evident color variation from light-yellow to brown. Au@Ag NPs have been prepared by two different protocols, using high- and low-power ultrasonic irradiation. The sonochemical method was essential for the sensing properties of the resulting nanoparticles. This facile sensing method has several advantages including excellent stability, selectivity, prompt detection, and cost-effectiveness

    Genetics of intellectual disability in consanguineous families

    No full text
    Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence

    Discriminative detection of morphine and methamphetamine-like street samples by label-free Cu doped-silver nanoparticles chemosensor

    No full text
    This research provides a straightforward and sensitive method for detecting morphine (MOR) and methamphetamine (MET) by colorimetry. In order to characterize the nanoprobe as it was prepared, XRD, FT-IR, XPS, UV–vis, TEM, ICP, DLS, and EDS analyses were conducted. We evaluated the performance of Ag/Cu nanoparticles for colorimetric sensing of MOR and MET. As well as naked-eye detection (photographs), UV–visible spectroscopy was used to monitor and record the results. Color shifts of colloidal NP solutions or surface plasmon resonance (SPR) absorbance bands were used to differentiate between MOR and MET, leading to the discovery that NP could distinguish between the two. Based on the linearity of the calibration curves' ranges, MOR and MET were found to have different limits of detection (LODs), which are 0.21 μg/mL and 0.49 μg/mL for each, respectively. In addition, they displayed a linear range of 0–50 μg/mL and 0–100 μg/mL, for MOR and MET, respectively. When Ag/Cu NPs are exposed to MOR and MET, they aggregate and exhibit noticeable color changes. For MOR, the changes ranged from bright yellow to smoky, while for MET, they were dark orange. The optimal incubation time for sensing MOR and MET was 7 and 35 min, respectively
    corecore