302 research outputs found

    Alien invasions and livelihoods: Economic benefits of invasive Australian Red Claw crayfish in Jamaica

    Get PDF
    Invasive species have caused widespread economic and environmental disruption, which have been widely studied. However, their potential benefits have received much less attention. If invasive species contribute to livelihoods, their eradication may negatively impact wellbeing. Failing to value these benefits may lead to an undervaluation of invaded ecosystems. We assess the potential economic benefits of an invasive species within an artisanal fishery in Jamaica. We monitored catches over 259 fisherman-days, and conducted 45 semi-structured interviews, with 76 fishermen. We show that the invasive Australian Red Claw crayfish (Cherax quadricarinatus) is an important source of income for fishermen within the Black River Lower Morass of Jamaica and supplement incomes during periods when native shrimp (Macrobrachium spp.) catches decline. We also show that full-time fishermen and those who have no alternative occupations expend the greatest fishing effort. We use the intra-annual variation of fishermen's harvest effort between seasons (when catch per unit effort changes) as a proxy for dependence. Using this measure, we found that the least wealthy appear to be the most dependent on fishing, and consequently benefit the most from the invasive crayfish. Our results demonstrate the importance of considering the potential benefits of invasive species within integrated landscape management

    Gold fragmentation induced by stopped antiprotons

    Full text link
    A natural gold target was irradiated with the antiproton beam from the Low Energy Antiproton Ring at CERN. Antiprotons of 200 MeV/c momentum were stopped in a thick target, products of their annihilations on Au nuclei were detected using the off-line gamma-ray spectroscopy method. In total, yields for 114 residual nuclei were determined, providing a data set to deduce the complete mass and charge distribution of all products with A > 20 from a fitting procedure. The contribution of evaporation and fission decay modes to the total reaction cross section as well as the mean mass loss were estimated. The fission probability for Au absorbing antiprotons at rest was determined to be equal to (3.8+-0.5)%, in good agreement with an estimation derived using other techniques. The mass-charge yield distribution was compared with the results obtained for proton and pion induced gold fragmentation. On the average, the energy released in pbar annihilation is similar to that introduced by ~ 1 GeV protons. However, compared to proton bombardment products, the yield distribution of antiproton absorption residues in the N-Z plane is clearly distinct. The data for antiprotons exhibit also a substantial influence of odd-even and shell effects.Comment: 14 pages, 9 figures, Revtex 4, to be published in Physical Review

    Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment

    Full text link
    In the PS209 experiments at CERN two kinds of measurements were performed: the in-beam measurement of X-rays from antiprotonic atoms and the radiochemical, off-line determination of the yield of annihilation products with mass number A_t -1 (less by 1 than the target mass). Both methods give observables which allows to study the peripheral matter density composition and distribution.Comment: LaTeX (espcrc1 style), 6 pages, 3 EPS figures, 1 table, Proceedings of the Sixth Biennal Conference on Low-Energy Antiproton Physics LEAP 2000, Venice, Ital

    Neutron density distributions from antiprotonic 208Pb and 209Bi atoms

    Get PDF
    The X-ray cascade from antiprotonic atoms was studied for 208Pb and 209Bi. Widths and shifts of the levels due to the strong interaction were determined. Using modern antiproton-nucleus optical potentials the neutron densities in the nuclear periphery were deduced. Assuming two parameter Fermi distributions (2pF) describing the proton and neutron densities the neutron rms radii were deduced for both nuclei. The difference of neutron and proton rms radii /\r_np equal to 0.16 +-(0.02)_{stat} +- (0.04)_{syst} fm for 208Pb and 0.14 +- (0.04)_{stat} +- (0.04)_{syst} fm for 209Bi were determined and the assigned systematic errors are discussed. The /\r_np values and the deduced shapes of the neutron distributions are compared with mean field model calculations.Comment: 22 pages, 8 tables, 15 figure

    Tracking the phase-transition energy in disassembly of hot nuclei

    Full text link
    In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular practice is to parametrise the yields of isotopes as a function of temperature in the form Y(z)=zτf(zσ(TT0))Y(z)=z^{-\tau}f(z^{\sigma}(T-T_0)), where Y(z)Y(z)'s are the measured yields and τ,σ\tau, \sigma and T0T_0 are fitted to the yields. Here T0T_0 would be interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions, this parametrisation is only approximate and hence allows for extraction of T0T_0 in more than one way. In this work we look in detail at how values of T0T_0 differ, depending on methods of extraction. It should be mentioned that for finite systems, this approximate parametrisation works not only at the critical point, but also for first order phase transitions (at least in some models). Thus the approximate fit is no guarantee that one is seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would look for a maximum in the specific heat as a function of temperature T2T_2. In this case T2T_2 is interpreted as the phase transition temperature. Ideally T0T_0 and T2T_2 would coincide. We invesigate this possibility, both in theory and from the ISiS data, performing both canonical (TT) and microcanonical (e=E/Ae=E^*/A) calculations. Although more than one value of T0T_0 can be extracted from the approximate parmetrisation, the work here points to the best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table

    Strong interaction and E2 effect in even- A antiprotonic Te atoms

    Get PDF
    The x-ray cascade from antiprotonic atoms was studied for Te-122, Te-124, Te-126, Te-128, and Te-130. Widths and shifts due to the strong interaction were deduced for several levels. The E2 nuclear resonance effect was observed in all investigated nuclei. In Te-130 the E2 resonance allowed to determine level widths and shifts of the LS-split deeply bound (n,l)=(6,5) state, otherwise unobservable. The measured level widths and shifts, corrected for the E2-resonance effect, were used to investigate the nucleon density in the nuclear periphery. The deduced neutron distributions are compared with results of the previously introduced radiochemical method and with Hartree-Fock-Bogoliubov model calculations

    Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams

    Get PDF
    Excitation-energy distributions have been derived from measurements of 5.0-14.6 GeV/c antiproton, proton and pion reactions with 197^{197}Au target nuclei, using the ISiS 4π\pi detector array. The maximum probability for producing high excitation-energy events is found for the antiproton beam relative to other hadrons, 3^3He and pˉ\bar{p} beams from LEAR. For protons and pions, the excitation-energy distributions are nearly independent of hadron type and beam momentum above about 8 GeV/c. The excitation energy enhancement for pˉ\bar{p} beams and the saturation effect are qualitatively consistent with intranuclear cascade code predictions. For all systems studied, maximum cluster sizes are observed for residues with E*/A \sim 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter B. also available at http://nuchem.iucf.indiana.edu

    Nucleon density in the nuclear periphery determined with antiprotonic x-rays: cadmium and tin isotopes

    Get PDF
    The x-ray cascade from antiprotonic atoms was studied for 106Cd, 116Cd, 112Sn, 116Sn, 120Sn, and 124Sn. Widths and shifts of the levels due to strong interaction were deduced. Isotopic effects in the Cd and Sn isotopes are clearly seen. The results are used to investigate the nucleon density in the nuclear periphery. The deduced neutron distributions are compared with the results of the previously introduced radiochemical method and with HFB calculations
    corecore