5 research outputs found

    Software and hardware systems for abdominal aortic aneurysm mechanical properties investigation

    No full text
    © Faculty of Mechanical Engineering, Belgrade. The main goal of this paper is to describe two different systems that were developed for the purpose of abdominal aortic aneurysm mechanical properties investigation and to present the results of the measurements. The first system is based on the Bubble Inflated method and it increases the pressure of physiological saline which affects blood vessel tissue and causes mechanical deformation. The system provides recording the data about the current value of the pressure in the physiological saline by using the appropriate pressure sensor. The second system makes stretches of the vessel tissue in uni-axial direction and save the data about the force and the elongation. Both of these systems use cameras for assessment of the deformation. Obtained results from both systems are used for numerical simulation of computer model for abdominal aortic aneurysm. It gives a new avenue for application of software and hardware systems for determination of vascular tissue properties in the clinical practice

    Electromagnetic field investigation on different cancer cell lines

    Get PDF
    Background: There is a strong interest in the investigation of extremely low frequency Electromagnetic Fields (EMF) in the clinic. While evidence about anticancer effects exists, the mechanism explaining this effect is still unknown. Methods: We investigated in vitro, and with computer simulation, the influence of a 50 Hz EMF on three cancer cell lines: breast cancer MDA-MB-231, and colon cancer SW-480 and HCT-116. After 24 h preincubation, cells were exposed to 50 Hz extremely low frequency (ELF) radiofrequency EMF using in vitro exposure systems for 24 and 72 h. A computer reaction-diffusion model with the net rate of cell proliferation and effect of EMF in time was developed. The fitting procedure for estimation of the computer model parameters was implemented. Results: Experimental results clearly showed disintegration of cells treated with a 50 Hz EMF, compared to untreated control cells. A large percentage of treated cells resulted in increased early apoptosis after 24 h and 72 h, compared to the controls. Computer model have shown good comparison with experimental data. Conclusion: Using EMF at specific frequencies may represent a new approach in controlling the growth of cancer cells, while computer modelling could be used to predict such effects and make optimisation for complex experimental design. Further studies are required before testing this approach in humans
    corecore