1,041 research outputs found
On the reduced density matrix for a chain of free electrons
The properties of the reduced density matrix describing an interval of N
sites in an infinite chain of free electrons are investigated. A commuting
operator is found for arbitrary filling and also for open chains. For a half
filled periodic chain it is used to determine the eigenfunctions for the
dominant eigenvalues analytically in the continuum limit. Relations to the
critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio
Density Matrices for a Chain of Oscillators
We consider chains with an optical phonon spectrum and study the reduced
density matrices which occur in density-matrix renormalization group (DMRG)
calculations. Both for one site and for half of the chain, these are found to
be exponentials of bosonic operators. Their spectra, which are correspondingly
exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure
Entanglement evolution after connecting finite to infinite quantum chains
We study zero-temperature XX chains and transverse Ising chains and join an
initially separate finite piece on one or on both sides to an infinite
remainder. In both critical and non-critical systems we find a typical increase
of the entanglement entropy after the quench, followed by a slow decay towards
the value of the homogeneous chain. In the critical case, the predictions of
conformal field theory are verified for the first phase of the evolution, while
at late times a step structure can be observed.Comment: 15 pages, 11 figure
Density-Matrix Spectra of Solvable Fermionic Systems
We consider non-interacting fermions on a lattice and give a general result
for the reduced density matrices corresponding to parts of the system. This
allows to calculate their spectra, which are essential in the DMRG method, by
diagonalizing small matrices. We discuss these spectra and their typical
features for various fermionic quantum chains and for the two-dimensional
tight-binding model.Comment: 12 pages and 9 figure
Phase Diagram of a 2D Vertex Model
Phase diagram of a symmetric vertex model which allows 7 vertex
configurations is obtained by use of the corner transfer matrix renormalization
group (CTMRG), which is a variant of the density matrix renormalization group
(DMRG). The critical indices of this model are identified as and
.Comment: 2 pages, 5 figures, short not
Half the entanglement in critical systems is distillable from a single specimen
We establish that the leading critical scaling of the single-copy
entanglement is exactly one half of the entropy of entanglement of a block in
critical infinite spin chains in a general setting, using methods of conformal
field theory. Conformal symmetry imposes that the single-copy entanglement for
critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6)
(\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an
infinite chain and c corresponds to the central charge. This proves that from a
single specimen of a critical chain, already half the entanglement can be
distilled compared to the rate that is asymptotically available. The result is
substantiated by a quantitative analysis for all translationally invariant
quantum spin chains corresponding to general isotropic quasi-free fermionic
models. An analytic example of the XY model shows that away from criticality
the above simple relation is only maintained near the quantum phase transition
point.Comment: 4 pages RevTeX, 1 figure, final versio
Real-space renormalization group approach for the corner Hamiltonian
We present a real-space renormalization group approach for the corner
Hamiltonian, which is relevant to the reduced density matrix in the density
matrix renormalization group. A set of self-consistent equations that the
renormalized Hamiltonian should satisfy in the thermodynamic limit is also
derived from the fixed point of the recursion relation for the corner
Hamiltonian. We demonstrate the renormalization group algorithm for the
XXZ spin chain and show that the results are consistent with the exact
solution. We further examine the renormalization group for the S=1 Heisenberg
spin chain and then discuss the nature of the eigenvalue spectrum of the corner
Hamiltonian for the non-integrable model.Comment: 7 page
Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group
We report a way of obtaining a spin configuration snapshot, which is one of
the representative spin configurations in canonical ensemble, in a finite area
of infinite size two-dimensional (2D) classical lattice models. The corner
transfer matrix renormalization group (CTMRG), a variant of the density matrix
renormalization group (DMRG), is used for the numerical calculation. The matrix
product structure of the variational state in CTMRG makes it possible to
stochastically fix spins each by each according to the conditional probability
with respect to its environment.Comment: 4 pages, 8figure
Corner Transfer Matrix Renormalization Group Method Applied to the Ising Model on the Hyperbolic Plane
Critical behavior of the Ising model is investigated at the center of large
scale finite size systems, where the lattice is represented as the tiling of
pentagons. The system is on the hyperbolic plane, and the recursive structure
of the lattice makes it possible to apply the corner transfer matrix
renormalization group method. From the calculated nearest neighbor spin
correlation function and the spontaneous magnetization, it is concluded that
the phase transition of this model is mean-field like. One parameter
deformation of the corner Hamiltonian on the hyperbolic plane is discussed.Comment: 4 pages, 5 figure
Critical Point of a Symmetric Vertex Model
We study a symmetric vertex model, that allows 10 vertex configurations, by
use of the corner transfer matrix renormalization group (CTMRG), a variant of
DMRG. The model has a critical point that belongs to the Ising universality
class.Comment: 2 pages, 6 figures, short not
- …