1,041 research outputs found

    On the reduced density matrix for a chain of free electrons

    Full text link
    The properties of the reduced density matrix describing an interval of N sites in an infinite chain of free electrons are investigated. A commuting operator is found for arbitrary filling and also for open chains. For a half filled periodic chain it is used to determine the eigenfunctions for the dominant eigenvalues analytically in the continuum limit. Relations to the critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio

    Density Matrices for a Chain of Oscillators

    Full text link
    We consider chains with an optical phonon spectrum and study the reduced density matrices which occur in density-matrix renormalization group (DMRG) calculations. Both for one site and for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which are correspondingly exponential, are determined and discussed. The results for large systems are obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    Density-Matrix Spectra of Solvable Fermionic Systems

    Full text link
    We consider non-interacting fermions on a lattice and give a general result for the reduced density matrices corresponding to parts of the system. This allows to calculate their spectra, which are essential in the DMRG method, by diagonalizing small matrices. We discuss these spectra and their typical features for various fermionic quantum chains and for the two-dimensional tight-binding model.Comment: 12 pages and 9 figure

    Phase Diagram of a 2D Vertex Model

    Full text link
    Phase diagram of a symmetric vertex model which allows 7 vertex configurations is obtained by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The critical indices of this model are identified as β=1/8\beta = 1/8 and α=0\alpha = 0.Comment: 2 pages, 5 figures, short not

    Half the entanglement in critical systems is distillable from a single specimen

    Full text link
    We establish that the leading critical scaling of the single-copy entanglement is exactly one half of the entropy of entanglement of a block in critical infinite spin chains in a general setting, using methods of conformal field theory. Conformal symmetry imposes that the single-copy entanglement for critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6) (\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an infinite chain and c corresponds to the central charge. This proves that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to general isotropic quasi-free fermionic models. An analytic example of the XY model shows that away from criticality the above simple relation is only maintained near the quantum phase transition point.Comment: 4 pages RevTeX, 1 figure, final versio

    Real-space renormalization group approach for the corner Hamiltonian

    Full text link
    We present a real-space renormalization group approach for the corner Hamiltonian, which is relevant to the reduced density matrix in the density matrix renormalization group. A set of self-consistent equations that the renormalized Hamiltonian should satisfy in the thermodynamic limit is also derived from the fixed point of the recursion relation for the corner Hamiltonian. We demonstrate the renormalization group algorithm for the S=1/2S=1/2 XXZ spin chain and show that the results are consistent with the exact solution. We further examine the renormalization group for the S=1 Heisenberg spin chain and then discuss the nature of the eigenvalue spectrum of the corner Hamiltonian for the non-integrable model.Comment: 7 page

    Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group

    Full text link
    We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by each according to the conditional probability with respect to its environment.Comment: 4 pages, 8figure

    Corner Transfer Matrix Renormalization Group Method Applied to the Ising Model on the Hyperbolic Plane

    Full text link
    Critical behavior of the Ising model is investigated at the center of large scale finite size systems, where the lattice is represented as the tiling of pentagons. The system is on the hyperbolic plane, and the recursive structure of the lattice makes it possible to apply the corner transfer matrix renormalization group method. From the calculated nearest neighbor spin correlation function and the spontaneous magnetization, it is concluded that the phase transition of this model is mean-field like. One parameter deformation of the corner Hamiltonian on the hyperbolic plane is discussed.Comment: 4 pages, 5 figure

    Critical Point of a Symmetric Vertex Model

    Full text link
    We study a symmetric vertex model, that allows 10 vertex configurations, by use of the corner transfer matrix renormalization group (CTMRG), a variant of DMRG. The model has a critical point that belongs to the Ising universality class.Comment: 2 pages, 6 figures, short not
    corecore