1,812 research outputs found
The pressure-amorphized state in zirconium tungstate: a precursor to decomposition
In contrast to widely accepted view that pressure-induced amorphization arises due to kinetic hindrance of equilibrium phase transitions, here we provide evidence that the metastable pressure-amorphized state in zirconium tungstate is a precursor to decomposition of the compound into a mixture of simple oxides. This is from the volume collapse ΔV across amorphization, which is obtained for the first time by measuring linear dimensions of irreversibly amorphized samples during their recovery to the original cubic phase upon isochronal annealing up to 1000 K. The anomalously large ΔV of 25.7 ± 1.2% being the same as that expected for the decomposition indicates that this amorphous state is probably a precursor to kinetically hindered decomposition. A P–T diagram of the compound is also proposed
The ribbonfish resources
Che ribbonfishes are an important group of food fishes in
India and their annual average production during 1971-*82 was
estimated at 55,300 tonnes which formed 4.3% of the total marine
fish landings and occupied 7th position. The studies indicate that
various species of ribbonfishes constitute substantial fishery in the
States of Andhra Pradesh, Tamil Nadu, Kerala and Maharashtra
showing considerable variations in the species composition,
season^ abundance and production trends
Group Chase and Escape
We describe here a new concept of one group chasing another, called "group
chase and escape", by presenting a simple model. We will show that even a
simple model can demonstrate rather rich and complex behavior. In particular,
there are cases in which an optimal number of chasers exists for a given number
of escapees (or targets) to minimize the cost of catching all targets. We have
also found an indication of self-organized spatial structures formed by both
groups.Comment: 13 pages, 12 figures, accepted and to appear in New Journal of
Physic
Origin for the enhanced copper spin echo decay rate in the pseudogap regime of the multilayer high-T_c cuprates
We report measurements of the anisotropy of the spin echo decay for the inner
layer Cu site of the triple layer cuprate, Hg_0.8Re_0.2Ba_2Ca_2Cu_3O_8 (T_c=126
K) in the pseudogap T regime below T_pg ~ 170 K and the corresponding analysis
for their interpretation. As the field alignment is varied, the shape of the
decay curve changes from Gaussian (H_0 \parallel c) to single exponential (H_0
\perp c). The latter characterizes the decay caused by the fluctuations of
adjacent Cu nuclear spins caused by their interactions with electron spins. The
angular dependence of the second moment (T_{2M}^{-2} \equiv )
deduced from the decay curves indicates that T_{2M}^{-2} for H_0 \parallel c,
which is identical to T_{2G}^{-2} (T_{2G} is the Gaussian component), is
substantially enhanced, as seen in the pseudogap regime of the bilayer systems.
Comparison of T_{2M}^{-2} between H_0 \parallel c and H_0 \perp c indicates
that this enhancement is caused by electron spin correlations between the inner
and the outer CuO_2 layers. These results provide the answer to the
long-standing controversy regarding the opposite T dependences of (T_1T)^{-1}
and T_{2G}^{-2} in the pseudogap regime of bi- and trilayer systems.Comment: 4 pages, 4 figure
Energy landscape of a Lennard-Jones liquid: Statistics of stationary points
Molecular dynamics simulations are used to generate an ensemble of saddles of
the potential energy of a Lennard-Jones liquid. Classifying all extrema by
their potential energy u and number of unstable directions k, a well defined
relation k(u) is revealed. The degree of instability of typical stationary
points vanishes at a threshold potential energy, which lies above the energy of
the lowest glassy minima of the system. The energies of the inherent states, as
obtained by the Stillinger-Weber method, approach the threshold energy at a
temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio
Superconductivity in Ru substituted BaFe2-xRuxAs2
The occurrence of bulk superconductivity at ~22 K is reported in
polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of
x=0.75 to 1.125. A systematic suppression of the spin density wave transition
temperature (TSDW) precedes the appearance of superconductivity in the system.
A phase diagram is proposed based on the measured TSDW and superconducting
transition temperature (TC) variations as a function of Ru composition. Band
structure calculations, indicate introduction of electron carriers in the
system upon Ru substitutiom. The calculated magnetic moment on Fe shows a
minimum at x=1.0, suggesting that the suppression of the magnetic moment is
associated with the emergence of superconductivity. Results of low temperature
and high field Mossbauer measurements are presented. These indicate weakening
of magnetic interaction with Ru substitutionComment: 20 pages 10 figure
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices
We study the statistical properties of eigenvalues of the Hessian matrix
(matrix of second derivatives of the potential energy) for a
classical atomic liquid, and compare these properties with predictions for
random matrix models (RMM). The eigenvalue spectra (the Instantaneous Normal
Mode or INM spectra) are evaluated numerically for configurations generated by
molecular dynamics simulations. We find that distribution of spacings between
nearest neighbor eigenvalues, s, obeys quite well the Wigner prediction , with the agreement being better for higher densities at fixed
temperature. The deviations display a correlation with the number of localized
eigenstates (normal modes) in the liquid; there are fewer localized states at
higher densities which we quantify by calculating the participation ratios of
the normal modes. We confirm this observation by calculating the spacing
distribution for parts of the INM spectra with high participation ratios,
obtaining greater conformity with the Wigner form. We also calculate the
spectral rigidity and find a substantial dependence on the density of the
liquid.Comment: To appear in Phys. Rev. E; 10 pages, 6 figure
- …