42 research outputs found

    Fractional calculus of variations in terms of a generalized fractional integral with applications to physics

    Get PDF
    We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed. Copyright 2012 Tatiana Odzijewicz et al

    Hierarchy of integrable Hamiltonians describing of nonlinear n-wave interaction

    Full text link
    In the paper we construct an hierarchy of integrable Hamiltonian systems which describe the variation of n-wave envelopes in nonlinear dielectric medium. The exact solutions for some special Hamiltonians are given in terms of elliptic functions of the first kind.Comment: 17 page

    Fractional variational calculus of variable order

    Full text link
    We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann-Liouville while derivatives are of Caputo type.Comment: Submitted 26-Sept-2011; accepted 18-Oct-2011; withdrawn by the authors 21-Dec-2011; resubmitted 27-Dec-2011; revised 20-March-2012; accepted 13-April-2012; to 'Advances in Harmonic Analysis and Operator Theory', The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkh\"auser Verlag (http://www.springer.com/series/4850

    Some Orthogonal Polynomials Arising from Coherent States

    Full text link
    We explore in this paper some orthogonal polynomials which are naturally associated to certain families of coherent states, often referred to as nonlinear coherent states in the quantum optics literature. Some examples turn out to be known orthogonal polynomials but in many cases we encounter a general class of new orthogonal polynomials for which we establish several qualitative results.Comment: 21 page

    On the existence of optimal consensus control for the fractional Cucker–Smale model

    Get PDF
    This paper addresses the nonlinear Cucker–Smale optimal control problem under the interplay of memory effect. The aforementioned effect is included by employing the Caputo fractional derivative in the equation representing the velocity of agents. Sufficient conditions for the existence of solutions to the considered problem are proved and the analysis of some particular problems is illustrated by two numerical examples.publishe

    Direct and Inverse Variational Problems on Time Scales: A Survey

    Full text link
    We deal with direct and inverse problems of the calculus of variations on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we give a general form for a variational functional to attain a local minimum at a given point of the vector space. Furthermore, we provide a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation (Helmholtz's problem of the calculus of variations on time scales). New and interesting results for the discrete and quantum settings are obtained as particular cases. Finally, we consider very general problems of the calculus of variations given by the composition of a certain scalar function with delta and nabla integrals of a vector valued field.Comment: This is a preprint of a paper whose final and definite form will be published in the Springer Volume 'Modeling, Dynamics, Optimization and Bioeconomics II', Edited by A. A. Pinto and D. Zilberman (Eds.), Springer Proceedings in Mathematics & Statistics. Submitted 03/Sept/2014; Accepted, after a revision, 19/Jan/201

    Variational Problems Involving a Caputo-Type Fractional Derivative

    Get PDF
    We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functional. The cases of integral and holomonic constraints are also considered

    Fractional calculus of variations of several independent variables

    No full text
    We prove multidimensional integration by parts formulas for generalized fractional derivatives and integrals. The new results allow us to obtain optimality conditions for multidimensional fractional variational problems with Lagrangians depending on generalized partial integrals and derivatives. A generalized fractional Noether's theorem, a formulation of Dirichlet's principle and an uniqueness result are given. © 2013 EDP Sciences and Springer

    Fractional differential equations with dependence on the Caputo-Katugampola derivative

    No full text
    In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation
    corecore