136 research outputs found

    CAVASS: A Computer-Assisted Visualization and Analysis Software System

    Get PDF
    The Medical Image Processing Group at the University of Pennsylvania has been developing (and distributing with source code) medical image analysis and visualization software systems for a long period of time. Our most recent system, 3DVIEWNIX, was first released in 1993. Since that time, a number of significant advancements have taken place with regard to computer platforms and operating systems, networking capability, the rise of parallel processing standards, and the development of open-source toolkits. The development of CAVASS by our group is the next generation of 3DVIEWNIX. CAVASS will be freely available and open source, and it is integrated with toolkits such as Insight Toolkit and Visualization Toolkit. CAVASS runs on Windows, Unix, Linux, and Mac but shares a single code base. Rather than requiring expensive multiprocessor systems, it seamlessly provides for parallel processing via inexpensive clusters of work stations for more time-consuming algorithms. Most importantly, CAVASS is directed at the visualization, processing, and analysis of 3-dimensional and higher-dimensional medical imagery, so support for digital imaging and communication in medicine data and the efficient implementation of algorithms is given paramount importance

    Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    Get PDF
    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus

    Zum naturlichen System der digenen Trematoden. VI

    No full text
    Volume: 42Start Page: 289End Page: 31

    Stichocotyle nephropis

    No full text

    Om den svenske Koloni Nya Sverige,

    No full text

    XXVI.— A note on a new genus of Bat Trematodes

    No full text
    • …
    corecore