6,512 research outputs found
Direct observation of double valence-band extrema and anisotropic effective masses of the thermoelectric material SnSe
Synchrotron-based angle-resolved photoemission spectroscopy is used to
determine the electronic structure of layered SnSe, which was recently turned
out to be a potential thermoelectric material. We observe that the top of the
valence band consists of two nearly independent hole bands, whose tops differ
by ~20 meV in energy, indicating the necessity of a multivalley model to
describe the thermoelectric properties. The estimated effective masses are
anisotropic, with in-plane values of 0.16-0.39 m and an out-of-plane value
of 0.71 m, where m is the rest electron mass. Information of the
electronic structure is essential to further enhance the thermoelectric
performance of hole-doped SnSe.Comment: 14 pages including 2 figures + 2 pages of supplementary dat
Development of an advanced Compton camera with gaseous TPC and scintillator
A prototype of the MeV gamma-ray imaging camera based on the full
reconstruction of the Compton process has been developed. This camera consists
of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and
scintillation cameras. With the information of the recoil electrons and the
scattered gamma-rays, this camera detects the energy and incident direction of
each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera
with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing
the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM
(Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV
gamma-rays were and , respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On
Radiation Imaging Detector
Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PK and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.National Institutes of Health, Cancer Research UK Program Grant IDs: C6/A11224, C6946/A14492), Wellcome Trust (Grant IDs: WT092096, WT093167
Recommended from our members
Achieving selectivity in space and time with DNA double-strand-break response and repair: molecular stages and scaffolds come with strings attached
When double-strand breaks (DSBs) in DNA remain unrepaired, catastrophic loss of genes occurs, leading to translocations, mutations and carcinogenesis. If a sister chromatid is not available at the DNA DSB, nonhomologous end joining (NHEJ) is used to join broken ends. The NHEJ pathway comprises synapsis, end processing and ligation. Here, we ask how DSBs in DNA are repaired efficiently. We suggest that colocation of proteins is achieved over time by the following components: stages, where the main actors are assembled, scaffolds that are erected quickly around broken parts to give access, and strings that tether proteins together. In NHEJ, a is provided by the Ku heterodimer interacting with DSBs and several other proteins including DNA-PKcs, APLF, BRCA1 and PAXX. A further , DNA-PKcs, links the kinase with DNA, Ku, PARP1, BRCA1 and Artemis. A temporary facilitates repair and is constructed from XRCC4/XLF filaments that bridge Ku bound at DSB ends. LigIV bound to XRCC4 C-termini likely terminates the scaffold, bringing LigIV close to the DNA broken ends. A , provided by the Artemis C-terminal region, is intrinsically disordered but includes short linear ‘‘epitopes’’ that recognise DNA-PKcs, LigIV and PTIP, so keeping these components nearby. We show that these stages, scaffolds and strings facilitate colocation and efficient DSB repair. Understanding these processes provides insight into the biology of DNA repair and possible therapeutic intervention in cancer and other diseases.Wellcome Trust (Programme Grant ID: 093167/Z/ 10/Z), National Health and Medical Research Council of Australia (C. J. Martin Research Fellowship, Grant ID: APP1072476), Gates Cambridge ScholarshipThis is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s11224-016-0841-
- …
