22 research outputs found

    Facial Structure Analysis Separates Autism Spectrum Disorders Into Meaningful Clinical Subgroups

    Get PDF
    Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011). Geodesic distances between standardized facial landmarks were measured from three-dimensional stereo-photogrammetric images. Subjects were evaluated for autism-related symptoms, neurologic, cognitive, familial, and phenotypic variants. The most compact cluster is clinically characterized by severe ASD, significant cognitive impairment and language regression. This verifies utility of facially-based ASD subtypes and validates Aldridge et al.\u27s severe ASD subgroup, notwithstanding different techniques. It suggests that language regression may define a unique ASD subgroup with potential etiologic differences

    Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs

    Get PDF
    Polylactide (PLA), a biopolymer, was reinforced with three fillers (two organic reinforcements and one inorganic filler). The processing technique used to fabricate the composites was the melt-blending technique. The composites and the unreinforced PLA were subjected to microhardness, compression and biodegradation characterisations. Data obtained are presented in this article as raw data. Data from microhardness and compression tests were used to predict the fracture toughness. The biodegradation of the composites was also examined, and the data obtained reported in this article. The data presented in this article allow for a comprehensive understanding of the mechanical behaviour and the biodegradation profile of three composites of PLA with respect to their applications as biodegradable implants. It also helps in the selection of fillers for biopolymers such as PLA

    Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs

    Get PDF
    Polylactide (PLA), a biopolymer, was reinforced with three fillers (two organic reinforcements and one inorganic filler). The processing technique used to fabricate the composites was the melt-blending technique. The composites and the unreinforced PLA were subjected to microhardness, compression and biodegradation characterisations. Data obtained are presented in this article as raw data. Data from microhardness and compression tests were used to predict the fracture toughness. The biodegradation of the composites was also examined, and the data obtained reported in this article. The data presented in this article allow for a comprehensive understanding of the mechanical behaviour and the biodegradation profile of three composites of PLA with respect to their applications as biodegradable implants. It also helps in the selection of fillers for biopolymers such as PLA

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Sorting the Phenotypic Heterogeneity of Autism Spectrum Disorders: A Hierarchical Clustering Model

    No full text
    Autism spectrum disorder (ASD) is characterized by notable phenotypic heterogeneity, which is often viewed as an obstacle to the study of its etiology, diagnosis, treatment, and prognosis. Heterogeneity in ASD is multidimensional and complex including variability in phenotype as well as clinical, physiologic, and pathologic parameters. We apply a hierarchical clustering model suited to dealing with datasets of mixed data types to stratify children with ASD into more homogeneous subgroups in line with the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 model. The results of this cluster analysis will provide a better understanding the complex issue of ASD phenotypic heterogeneity and identify subgroups useful for further ASD genetic studies. Our goal is to provide insight into viable phenotypic and genotypic markers that would guide further cluster analysis of ASD genetic data. We suggest that analyzing the clusters in a hierarchical structure is a well-suited and meaningful model to unravel the complex heterogeneity of this disorder

    Ensemble Statistical and Subspace Clustering Model for Analysis of Autism Spectrum Disorder Phenotypes

    No full text
    Heterogeneity in Autism Spectrum Disorder (ASD) is complex including variability in behavioral phenotype as well as clinical, physiologic, and pathologic parameters. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) now diagnoses ASD using a 2-dimensional model based social communication deficits and fixated interests and repetitive behaviors. Sorting out heterogeneity is crucial for study of etiology, diagnosis, treatment and prognosis. In this paper, we present an ensemble model for analyzing ASD phenotypes using several machine learning techniques and a k-dimensional subspace clustering algorithm. Our ensemble also incorporates statistical methods at several stages of analysis. We apply this model to a sample of 208 probands drawn from the Simon Simplex Collection Missouri Site patients. The results provide useful evidence that is helpful in elucidating the phenotype complexity within ASD. Our model can be extended to other disorders that exhibit a diverse range of heterogeneity

    Genetic Variant Analysis of Boys with Autism: A Pilot Study on Linking Facial Phenotype to Genotype

    No full text
    This work examines the validity of facial phenotypes as Autism Spectrum Disorders (ASD) biomarkers in boys with essential autism. A family-based association analysis framework is presented that uses previously identified facially-delineated (FD) clusters to examine relationship between FD clusters and known ASD genes. The hypothesis is that there are certain genetic variants, single nucleotide polymorphisms (SNP), specific to the FD clusters. Although statistical significance was not established, the results identified some candidate SNPs unique to each of the FD clusters that could indicate an underlying etiological difference. Further, recommendations are provided for larger-scale studies that could utilize the analysis framework presented
    corecore