138 research outputs found

    Allergen particle binding by human primary bronchial epithelial cells is modulated by surfactant protein D

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. Our previous work demonstrated that SP-D increases the uptake of SPP by alveolar macrophages. In the present study, we investigated the uptake of SPP in human primary epithelial cells and the potential modulation by SP-D. The patho-physiological consequence was evaluated by measurement of pro-inflammatory mediators.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labelled. Human primary bronchial epithelial cells were incubated with SPP or polystyrene particles (PP) in the presence and absence of surfactant protein D. In addition, different sizes and surface charges of the PP were studied. Particle uptake was evaluated by flow cytometry and confocal microscopy. Soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by primary epithelial cells in a dose dependent manner. This uptake was coincided with secretion of Interleukin (IL)-8. SP-D increased the fraction of bronchial epithelial cells that bound SPP but not the fraction of cells that internalized SPP. SPP-induced secretion of IL-8 was further increased by SP-D. PP were bound and internalized by epithelial cells but this was not modulated by SP-D.</p> <p>Conclusions</p> <p>Epithelial cells bind and internalize SPP and PP which leads to increased IL-8 secretion. SP-D promotes attachment of SPP to epithelial cells and may thus be involved in the inflammatory response to inhaled allergen.</p

    Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”

    Get PDF
    BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient

    DFT studies of the role of C-2-O-2 bond rotation in neighboring-group glycosylation reactions: Carbohydr.Res.

    No full text
    Although the synthetic utility of the 1,2-trans relationship of the products of neighboring group participation is well established, it is still common to find glycosylation reactions where the stereochemical purity of the products is not 100%. As part of an ongoing series of density functional theory (DFT) studies of the factors that affect glycosylation reactions which are aimed at allowing synthetic chemists to achieve such selectivities, the structures of four oxacarbenium ions and eight methanol complexes of these ions were optimized for the prototypical ions 2-O-acetyl-3,4,6-tri-O-methyl-D-gluco- (1) and mannopyranos-1-yl (2). These studies corroborate the two-conformer hypothesis and further demonstrate that glycopyranosyl oxacarbenium ions exhibit facial selectivity that depends on, besides the inherent steric and Van der Waals effects, the conformational effect associated with the change from sp(2) to sp(3) hybridization at C-1 during nucleophilic attack and H-bonding between the incoming nucleophile and the electronegative atoms of the electrophile. Further studies based on systematic C-2-O-2 bond rotations found TSs that connect the monocyclic ions with the bicyclic ions associated with neighboring-group participation. It was also possible to find two TSs that connect nucleophilic attack at C-1 with C-2-O-2 bond rotation ultimately leading to 1,2-trans O-glycosides, that is, the probable TS that determines the stereochemistry of neighboring-group participation. Both of these TSs exhibit intramolecular H-bonding, which is considered the first step in proton transfer. It is further hypothesized that this coupling of proton transfer and nucleophilic attack is integral to glycosylation. It is further hypothesized that in many cases analogous intermolecular H-bonding is also favorable with the most likely acceptor the anion that is ion-paired to the oxacarbenium ion. These general features are found for both 1 and 2, but characteristic features of each isomer are found that provide further insights into the origins of stereoselectivityNRC publication: Ye
    corecore