
RESEARCH Open Access

Convolution of large 3D images on GPU and its
decomposition
Pavel Karas* and David Svoboda

Abstract

In this article, we propose a method for computing convolution of large 3D images. The convolution is performed
in a frequency domain using a convolution theorem. The algorithm is accelerated on a graphic card by means of
the CUDA parallel computing model. Convolution is decomposed in a frequency domain using the decimation in
frequency algorithm. We pay attention to keeping our approach efficient in terms of both time and memory
consumption and also in terms of memory transfers between CPU and GPU which have a significant inuence on
overall computational time. We also study the implementation on multiple GPUs and compare the results between
the multi-GPU and multi-CPU implementations.

Keywords: convolution, decomposition, Fourier transform, FFT, GPU, CUDA

1 Introduction
The convolution of two signals can be employed for
blurring images, deconvolving blurred images, edge
detection, noise suppression, and in many other applica-
tions [1-3]. For example, a cross-correlation and a
phase-correlation (which are important methods of
image registration) are both very similar to a convolu-
tion since they have basically the same mathematical
meaning except that a convolution involves reversing a
signal [[1], p.211]. The convolution of large signals is
also used for simulating image formation in optical sys-
tems such as light microscopes [4]. The convolution is a
common method used in image processing; however, its
computation is very time-consuming for large images.
Graphic cards can be employed for accelerating the
computation. Some of the algorithms can be found in
NVIDIA whitepaper [5]. Here, a so-called naïve convo-
lution and a convolution with separable kernel are
described, along with their optimized GPU implementa-
tion in CUDA. These algorithms can be used in many
applications, such as fast computation of Canny edge
detection [6,7]. However, these approaches are not suita-
ble for general large kernels.
In optical microscopy, we often deal with both large

input signals and kernels. Thus, in this article, we

discuss the time complexity of a convolution with
emphasis on large 3D images. We recall the convolution
theorem and its positive effect on the time complexity.
For example, having a signal of 1000 × 1000 × 100 vox-
els and a filter kernel of 100 × 100 × 100 voxels, which
is common in optical microscopy, the calculation using
the convolution theorem takes tens of seconds, instead
of several days, on the most recent CPU architecture.
Even better times can be obtained using graphic cards.
The GPU-based convolution using the convolution the-
orem is described in [8]. As indicated by authors, the
FFT-based approach is suitable for large non-separable
kernels.
The essential part of the algorithm described above is

the Fourier transform. The first attempt to compute the
fast Fourier transform on graphics hardware was
described in [9]. The implementation was written in
OpenGL and Cg shading languages and tested in the
convolution application. The comparison of convolution
in spatial and frequency domain (for the description of
both approaches refer to the following section) was
made in [10]. A significant speedup was achieved by
implementing the algorithm on GPU, using HLSL and
DirectX. Recently, the NVidia® CUDA programming
model [11] along with the CUFFT library [12] offers a
framework for implementing convolution in a straight-
forward manner. Besides CUFFT, other FFT libraries for
GPU were developed, such as [13] and [14]. The

* Correspondence: xkaras1@fi.muni.cz
Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk
University, Botanicka 68a, Brno, Czech republic

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

© 2011 Karas and Svoboda; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193640938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:xkaras1@fi.muni.cz
http://creativecommons.org/licenses/by/2.0

OpenCL framework allows implementing methods on
heteregenous platforms, consisting of CPU, GPU and
other architectures [15,16].
The bottleneck of the GPU acceleration is that gra-

phics hardware offers rather small amount of memory.
This poses a significant problem to attempts of acceler-
ating convolution of huge images on GPU. Due to con-
volution properties, the convolved image can be divided
into arbitrarily small parts, but all the sub-images have
to be extended with neighboring pixels of at least size of
the filter kernel (point spread function–PSF), as
described in [17]. Thus, a lot of redundant computation
needs to be performed, proportionally to the PSF size.
This approach was successfully used in [18], to compute
spatially variant deconvolution of Hubble Space Tele-
scope images. We propose a new approach, which is
optimal, in terms of both the number of per-voxel com-
putations and the number of memory transfers.

1.1 Convolution
A 1D convolution of two discrete finite signals f, g is
defined by following [19]:

[f ∗ g](n) ≡
Mg−1∑
m=0

f (n − m)g(m), n = 0, . . . ,M − 1,(1)

where Mf and Mg is the number of samples of f and g,
respectively. The convolution then produces a signal of
size M = Mf +Mg - 1. For the list of conventions used in
the article refer to Appendix A.
Obviously, we have to take into account the boundary

conditions defining f(m) at m < 0 and m >Mf - 1
[19,20]. Usually we set

f (m) ≡ 0, (m < 0) ∨ (m > Mf − 1) (2a)

(Dirichlet boundary conditions) or

f (m) ≡
{
f (0), m < 0,
f (Mf − 1), m > Mf − 1

(2b)

(Neumann boundary conditions).
In practice, one of the signals has usually significantly

larger size and is called simply the signal whereas the
other is of a smaller size and is called the filter kernel.
For instance, a kernel can be given by a simple function,
such as Gaussian, or by so-called PSF, a function that
describes the impulse response of an imaging system to
a point source [[3], pp. 205-207].
A computation of convolution can be very time-con-

suming. From Equation (1) it can be easily deduced that
the time complexity of the problem is O (Mf Mg). In the
case the kernel is small (tens of samples) the convolu-
tion can be computed in a reasonable time, even for
large signals. However, in some applications such as

optical microscopy one deals with both signals and ker-
nels of more than a million of samples each. In this case
computation would take several days which is unaccep-
table and a different solution needs to be applied.

1.2 Convolution theorem
The convolution theorem provides us with a powerful
tool for convolving large signals. Having two signals f, g
it can be proved that

F [
f ∗ g

]
= F [

f
]F [

g
]
, (3a)

f ∗ g = F−1(F[f]F[g]), (3b)

where F denotes a Fourier transform. Therefore,
instead of a convolution according to the definition,
Fourier transforms can be applied on both the signal
and the kernel, then their pointwise product is com-
puted and finally inverse Fourier transform is applied to
obtain the result [19].
Keep in mind that before the computation both the sig-

nal and the kernel need to be padded to the same size
(that is, to the size of the resulting convolved signal) to
avoid problems with boundary values. For example, in 1D
case both the signal and the kernel are padded to M = Mf

+ Mg - 1 samples. There are several ways how to pad the
data, usually they are padded with zeros. The position of
the padding influences the position of the resulting signal.
Refer to [19] for more details. According to the convolu-
tion theorem the asymptotic time complexity of a convo-
lution is the complexity of FFT [19,21], i.e., O(M log M).a

1.3 Memory complexity
As we mentioned in the previous section, to be able to
apply the convolution theorem both the signal and the
kernel have to be padded before computation. Hence,
aM bytes of memory is required to store signal and the
same amount for kernel, thus 2aM bytes in total where
a is the size of data type used, e.g., typically 4 bytes for
a single precision.
The Fourier transform can be performed in-place on a

complex signal, so no additional memory is required. If
the Fourier transform is performed on a real signal, the
following property holds:

F(μ) = F∗(M − μ), μ �= 0,

F(0) = F∗(0),
(4)

where * denotes a complex conjugate. This also means
that Im [F(0)] = 0. In n-D case, an analogous property is
held. Therefore, real data can also be processed in-place
except that it needs to be padded in the last dimensionb

to size M′ = 2
(⌊M

2

⌋
+ 1

)
. Thus, only half of the Fourier

domain can be stored in the memory [19,22].

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 2 of 12

2 Method
2.1 GPU accelerated convolution
In this section, we describe a basic GPU-based imple-
mentation of convolution using CUDA. CUDA is a par-
allel computing model introduced by the nVidia
company. It provides C language extensions to imple-
ment pieces of code on GPU. This so-called CUDA
Toolkit also includes the CUBLAS and the CUFFT
libraries providing algorithms for linear algebra and fast
Fourier transform, respectively.
Using the Toolkit, an implementation of a convolution

is quite simple and straightforward, see the example in
Figure 1. Basically, the algorithm consists of three parts:
First, the data are transferred from CPU (host) memory
to GPU (device) memory. Then, the Fourier transform,
the pointwise multiplication, and the inverse Fourier
transform are subsequently performed. Finally, the data
are transferred back to the host memory.
The pointwise multiplication is done in a simple

loop so its parallelization is straightforward. GPU
threads are mapped to individual image pixels, natu-
rally providing coalesced memory accesses and mas-
sive parallelism. This approach is thus simple and
optimal, limited by a global memory bandwidth only.
For basic information and examples refer to the
CUDA Programming Guide document and CUDA
SDK samples [11,23].
The Fourier transform parallel computations are pro-

vided by the CUFFT library [12], as it is presently to
our best knowledge the best library for FFT computa-
tion on GPU. In this part of the algorithm, all the opti-
mizing issues (e.g., memory coalescing, shared or
texture memory usage, etc.) are concerns of the CUFFT
library.

When dealing with both large 3D images and large
kernels it is impossible to compute convolution at once
on GPU since the recent graphic cards typically have
about 1GB of memory. This is also due to CUFFT speci-
fics–if an image is too large to be stored in a shared
memory, the FFT is performed out-of-place. As a result,
even more memory is required [12]. In this section, we
propose an algorithm for the decomposition of convolu-
tion. First, we describe the decimation in frequency
(DIF) algorithm. This approach is not new, it was used,
e.g., in [10], to provide the whole FFT computation.
However, our contribution is to employ the DIF method
to decompose data, i.e., to prepare it for convolution so
that it can be processed in parts.
It should be noted that there are several other

approaches to decompose the FFT problem, however,
they are sub-optimal in means of the number of per-
pixel operations and data transfers. First, the DIT
method can be used instead of the DIF. However, unlike
the DIF, this approach does not provide complete separ-
ability of the resulting sub-problems. This leads to a lot
of redundant data transfers. Second, in the spatial
domain, the convolved image can be divided into small
parts. This method will be referred to as the tiling.
However, all the sub-images have to be extended with
neighboring pixels of at least size of the filter kernel
[17]. Thus, a lot of redundant computation needs to be
performed, proportionally to the PSF size.
The comparison of three approaches to divide the

convolution problem is shown in Table 1. Mf and Mg

denote the size of the signal and kernel, respectively, c is
a constant corresponding to a per-pixel number of
arithmetic operations needed for the computation of
FFT, and P denotes the number of parts the input data

procedure CUDACONVOLUTION(signal, kernel, K, L, M , norm)

cuMemcpy(gpu s, signal,HostToDevice)

cuMemcpy(gpu k, kernel,HostToDevice)

gpu s ← cuFFT(gpu s)

gpu k ← cuFFT(gpu k)

gpu s ← pwProd(gpu s, gpu k,K,L,M, norm)

gpu s ← cuIFFT(gpu s)

cuMemcpy(signal, gpu s,DeviceToHost)

end procedure
Figure 1 Convolution in CUDA. The function called cuMemcpy provides data transfers between CPU (Host) and GPU (Device). The pwProd
provides a pointwise multiplication of two signals on GPU. The norm constant normalizes the convolution if required. The result is stored in
signal variable in order to save memory. The result could also be stored in another parameter in case we needed to keep the input data.

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 3 of 12

are divided into. The DIF method is the only one which
is not depend on the P parameter.

2.2 Decimation in frequency
The DIF algorithm is a technique used in fast Fourier
transform to split data into several disjoint parts. We
will introduce the idea for 1D case first. Let us have a
function f(m) and its Fourier transform F(μ), m, μ = 0,
..., M - 1. Supposing that M is even we introduce new
functions r(m’) and s(m’), m’ = 0, ..., M/2 - 1 as follows
[22,24]:

r(m′) ≡ f (m′) + f (m′ +M/2), (5a)

s(m′) ≡ [f (m′) − f (m′ +M
/
2)]W−m′

M , (5b)

where WM = ei
2π
M is a base function of a Fourier trans-

form. Vice versa, it is simple to deduce

f (m′) =
1
2

[
r(m′) + s(m′)Wm′

M

]
, (6a)

f (m′ +M
/
2) =

1
2

[
r(m′) − s(m′)Wm′

M

]
. (6b)

Then it can be proved that the Fourier transforms R
(μ’) and S(μ’) of the functions fulfil the following prop-
erty:

R(μ′) = F(2μ′), (7a)

S(μ′) = F(2μ′ + 1). (7b)

As explained above, the input function f can be
decomposed into two half-sized parts r and s. The most
important property of r and s is that they are completely
separated parts of the original function in the frequency
domain. Furthermore, the DIF algorithm can be applied
recursively on the functions r and s, so the function f
can be decomposed into four parts, then into eight
parts, etc., supposing that M is divisible by 4, 8, Fig-
ure 2 depicts a scheme of the DIF algorithm.
The decomposition can be employed in n-D case.

Since a Fourier transform is separable, an n-D transform
can be expressed as a sequence of 1D transforms.
Hence, the decomposition can be applied in any dimen-
sion. For 3D signals, a decomposition in z dimension–or
the first coordinate in a row-major order–should be
applied so that P separated parts in P continuous
blocks of a memory are obtained. Unlike interlaced data,
continuous blocks are optimal for data transfers.

2.3 Implementation
In this section, we introduce a modified algorithm for
computing a convolution of large 3D images on GPU.
The algorithm uses the DIF method for decomposing
data. If the data are complex then the decomposition

Table 1 Methods for decomposition of the convolution problem and their requirements

Method Number of operations Number of memory transactions

DIF c(Mf + Mg) log(Mf + Mg) + (Mf + Mg) 3(Mf + Mg)

DIT c(Mf + Mg) log(Mf + Mg) + 2(Mf + Mg) (2 + P)(Mf +Mg)
Tilling c(Mf + PMg) log(

Mf

P +Mg) + (Mf + 2PMg) 2Mf + (P + 1)Mg

Figure 2 Buttery scheme of the DIF. Equation (5) is applied on
the signal f of length 8 (the black points) and then two discrete
Fourier transform of the half size are performed. The transformed
signal F is the result.

Figure 3 A scheme description of the proposed algorithm:
convolution with a decomposition in a frequency domain.

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 4 of 12

can be performed in-place, whereas if the data are real
then the decomposition need to be performed out-of-
place. The real data could also be transformed into a
complex form but it is rather ineficient.
For the out-of-place decomposition of the data,

2aKLM bytes are required for storing the signal and the
kernel and 4aKLM bytes for the decomposed data since
complex numbers use up twice the size of real numbers.
Thus, the overall memory space required is 6aKLM
bytes.
A general review of the algorithm is shown in Figure

3, full description is in Figure 4. It is assumed that size
of the data in z dimension is divisible by P, otherwise
the data need to be padded to the nearest multiple of P
before the convolution. However, it does not introduce
a significant overhead to the algorithm since the size of
the padding, if needed, is less than 1% of the overall
image size.
Our implementation offers (de)compositions into 2, 4,

8, or 16 parts. These are provided by particular proce-
dures named Decompose2, Decompose4, Decompose8,
and Decompose16 (and analogously Compose2, etc.).
The Decompose2 and Compose2 procedures conduct
Equations (5) and (6), respectively. The Decompose4
and Compose4 may either recursively call the Decom-
pose2 and Compose2, respectively, or they may directly
split the data into four parts and reconstruct back from
the four parts, respectively. We have opted for the latter
solution since it requires smaller number of operations
per voxel. Refer to Appendix B for more details.
The remaining procedures were implemented as fol-

lows:

Decompose8 = Decompose4 ◦ Decompose2,

Decompose16 = Decompose4 ◦ Decompose4,

Compose8 = Compose2 ◦ Compose4,

Compose16 = Compose4 ◦ Compose4,

where ∘ denotes a composition of operations.

2.4 Multi-GPU implementation
Since the decomposition separates the convolution into
P parts it is plain enough to solve the problem by mul-
tiple GPUs. To analyze precisely the contribution of the
multi-GPU implementation we have to examine times
spent in individual phases of the algorithm. In the sin-
gle-GPU implementation described in Section 2.3 the
overall time T can be expressed as follows:

T = max(tp + td, ta) + th→d + tconv + td→h + tc, (8)

where tp is the time required for the padding of the
data, td for decomposition, ta for allocating memory and
setting up FFT plans on GPU, th ® d for data transfers
from CPU to GPU (host to device), tconv for the convo-
lution itself, td®h for data transfers from GPU to CPU
(device to host) and finally tc for composition. Despite
the fact that most time is spent in the convolution
phase, the other phases cannot be neglected. Please note
that the ta time needed for preparing the GPU can be
overlapped with the tp and td times needed for prepar-
ing the data on CPU.
Supposing that G GPUs are available and, for the sake

of simplicity, P is divisible by G, the overall time T’ can
be expressed as follows:

T′ = max
(
tp + td, ta

)
+ th→d +

tconv
G + td→h + tc, (9)

assuming that data cannot be transferred to multiple
devices concurrently so both the times th®d and td®h

remain the same. As a result, a data transfer of two
image tiles from CPU to two GPUs concurrently–that is
one tile to each GPU–lasts double the time of a data
transfer of one tile to a single GPU. Actually, the overall
time complexity of multi-GPU implementation can be
even better than determined in Equation (9) because the

procedure CUDADECOMPOSEDCONVOLUTION(P , signal, kernel, K, L, M , norm)

signal′ ← Decompose(signal,P)

kernel′ ← Decompose(kernel,P)

for k ← 0,P − 1 do

CudaConvolution(signal′k, kernel
′
k,K/P , L,M, norm)

end for

signal ← Compose(signal′,P)

end procedure
Figure 4 Convolution in CUDA with a decomposition.

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 5 of 12

data transfers can be overlapped by computations on
those GPUs that already possess the data (see Figure 5).
The precise time values differ in particular situations. In
general, they depend on the ratio of the data transfers
and the convolution itself so Equation (9) can be consid-
ered as the upper estimate.
The final multi-GPU implementation is described in

algorithm in Figure 6. Also a simple implementation of
a custom cuMemcpy function is described in Figure 7.
This function guarantees unique memory access
enabling faster overall computation time in this way.

3 Results
We have performed several benchmarks on a machine
with the Intel® Core™ i7 950 processor with 6 GB
DDR3 RAM and the nVidia® GeForce GTX 295 gra-
phic card with 2 × 896 MB GDDR3 RAM. The CPU
implementation uses the FFTW library while the GPU
implementation uses our algorithm. Both the decom-
position and the composition are performed on CPU.
Therefore, we have written them in C language and
further improved with SSE intrinsics for a better
performance.

Figure 5 Timeline: single-GPU versus multi-GPU (a model situation). The dark boxes depict data transfers between CPU and GPU while the
light boxes represent convolution computations. In the first row there is the single-GPU implementation. In the second row there is a timeline
for parallel usage of two GPUs. The data transfers are performed concurrently but through a common bus, therefore they last twice longer. For
the third row the data transfers are synchronized so that only one transfer is made at a time. In the last row the data transfers are overlapped
with a convolution execution.

procedure CUDAMULTIGPUCONVOLUTION(P , G, signal, kernel, K, L, M , norm)

signal′ ← Decompose(signal,P)

kernel′ ← Decompose(kernel,P)

for l ← 0,G − 1 do � Parallel loop

selectDevice(l)

CudaDecomposedConvolution(P/G, signal′l, kernel′l,K/G, L,M, norm)

end for

signal ← Compose(signal′,P)

end procedure
Figure 6 Multi-GPU convolution. The for loop is performed on all the available graphic cards in parallel.

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 6 of 12

3.1 Single GPU implementation
The single GPU implementation was compared with a
single thread CPU implementation. Considering the
CPU implementation two approaches are distinguished:
The one using both complex-to-complex FFT and
inverse FFT (we call it the c2c implementation) and
the one using real-to-complex FFT and complex-to-real
inverse FFT (the r2c implementation). The former
implementation can generally be used for convolving
complex data (much like our approach), the latter one
can be used on real data only but is twice as effective
(in means of both the memory requirements and the
speed).
In the first dataset (Table 2) the images are padded to

the powers of two in each dimension so we refer to
them as to specifically sized images. This property has a
significant inuence on computation time because on
these images the FFT algorithm performs the best. In
the second dataset (Table 3) the images are arbitrarily
sized except that in the z dimension the padded size is

kept so that the decomposition can be performed with-
out the need of additional image padding.
In all tests, the decomposition parameter P was set to

the least possible value so that the resulting sub-images
fitted into GPU memory. For example, if the image was
small enough, the decomposition was not performed at
all, the larger the image was the more parts it was
decomposed into.
The computation times are presented in Tables 2 and

3. For the sake of understandability the times were also
converted into computation speed (number of voxels
processed per second), see Figure 8(a),(c).
The results show that a single-GPU implementation is

more than ten times faster as compared to a single
thread CPU c2c implementation and about four times
faster than a single thread CPU r2c implementation if
the images are large enough. The r2c approach is the
only one which can process images with sizes of more
than 500 megavoxels. This is due to the limitations of
the CPU memory.
We can also see that in the case of specifically sized

images the difference between the time values is small
for images smaller than 10 megavoxels. Nevertheless, in
practise the arbitrarily sized images are more frequent.
In this case, the GPU implementation is faster even on
smaller images.

3.2 Multi-GPU implementation
In the second experiment, the multi-GPU implementa-
tion (using both the GPUs of GTX 295) was compared
with a multiple thread CPU implementation. The same
dataset was used, e.g., both the specifically sized and the
arbitrarily sized images. The results are presented in
Tables 4 and 5 and in Figure 8(b),(d).
The results reveal several facts. Again, the GPU imple-

mentation is up to eight times faster than the CPU c2c
implementation (depending on image sizes) and up to
three times faster than the CPU r2c implementation
when comparing two GPUs with two CPU cores. Also a
test with four CPU cores was made and the GPU imple-
mentation has performed still two times faster if the

Table 2 Convolution of specifically sized images

Image size Time (s)

Image x × y × z [Mpx] P GPUc2c CPUr2c CPUr2c

1 256 × 256 × 64 4.2 1 0.3 0.6 0.2

2 512 × 256 × 64 8.4 1 0.4 1.4 0.4

3 512 × 512 × 64 16.8 1 0.5 3.4 0.9

4 512 × 512 × 128 33.6 2 0.6 13.2 2.6

5 1024 × 512 × 128 67.1 4 1.4 29.3 5.4

6 1024 × 1024 × 128 134.2 8 2.8 54.3 12.9

7 1024 × 1024 × 256 268.4 16 6.2 104.3 24.0

8 2048 × 1024 × 256 536.9 – – – 52.2

Table 3 Convolution of arbitrarily sized images

Image size Time (s)

Image x × y × z [Mpx] P GPUc2c CPUc2c CPUr2c

9 257 × 257 × 64 4.2 1 0.6 1.4 1.1

10 513 × 257 × 64 8.4 1 0.8 2.4 1.2

11 513 × 513 × 64 16.8 1 0.8 3.7 1.8

12 513 × 513 × 128 33.7 2 1.4 8.0 3.8

13 1025 × 513 × 128 67.3 4 2.6 19.8 14.7

14 1025 × 1025 × 128 134.5 8 5.6 52.8 34.8

15 1025 × 1025 × 256 269.0 16 11.5 118.9 70.5

16 2049 × 1025 × 256 537.7 - - - 189.0

procedure CULOCKEDMEMCPY(to, from, direction)

while lock do

Wait()

end while

lock ← true

cuMemcpy(to, from, direction)

lock ← false

end procedure
Figure 7 Data transfer with the bus lock. A new (global) variable
called lock is introduced. This variable (or a flag) is shared across all
the GPUs sharing the common data bus so that each time a GPU
needs to send or receive data, it waits until the bus is free, then it
locks the bus, transfers data, and finally unlocks the bus. (a) Single
GPU, specific sizes. (b) Two GPUs, specific sizes. (c) Single GPU,
arbitrary sizes. (d) Two GPUs, arbitrary sizes.

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 7 of 12

images were large enough. In general, the GPU imple-
mentation becomes advantageous on images larger than
50 megavoxels.
Note that in some cases a single GPU has performed

better than two GPUs (especially in the case of specifi-
cally sized images). We shall see in the following section
that the algorithm spent too much time in preliminary

phases (such as data decomposing or memory allocat-
ing) at the expense of the convolution itself.

3.3 Time analysis
We have analyzed the time distribution of the phases of
the proposed algorithm on two images with a resulting
image size of 640 × 640 × 128 voxels. Our method was
tested with different settings of the parameter P

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128 256 512 1024

sp
ee

d
[M

vo
xe

ls
/s

]

image size [Mvoxels]

GPUc2c

CPUc2c

CPUr2c

(a) Single GPU, specific sizes

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128 256 512 1024

sp
ee

d
[M

vo
xe

ls
/s

]

image size [Mvoxels]

2 GPUc2c

2 CPUc2c

2 CPUr2c

4 CPUc2c

4 CPUr2c

(b) Two GPUs, specific sizes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 16 32 64 128 256 512 1024

sp
ee

d
[M

vo
xe

ls
/s

]

image size [Mvoxels]

GPUc2c

CPUc2c

CPUr2c

(c) Single GPU, arbitrary sizes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 16 32 64 128 256 512 1024

sp
ee

d
[M

vo
xe

ls
/s

]

image size [Mvoxels]

2 GPUc2c

2 CPUc2c

2 CPUr2c

4 CPUc2c

4 CPUr2c

(d) Two GPUs, arbitrary sizes

Figure 8 The computation speed (in Megavoxels per second) on different datasets (specifically and arbitrarily sized) and
configurations (single and multiple GPUs). Comparison between CPU and GPU.

Table 4 Multi-GPU convolution of specifically sized
images

Time (s)

Image 2GPUc2c 2CPUc2c 2CPUr2c 4CPUc2c 4CPUr2c

1 0.5 0.3 0.1 0.3 0.1

2 0.5 0.7 0.2 0.5 0.3

3 0.7 1.7 0.5 1.1 0.6

4 0.9 6.3 1.3 3.5 0.9

5 1.3 14.5 2.8 8.9 1.8

6 2.5 30.7 6.6 19.9 3.7

7 4.8 53.4 12.3 31.4 6.8

8 - - 26.7 - 14.5

Table 5 Multi-GPU convolution of arbitrarily sized images

Time (s)

Image 2GPUc2c 2CPUc2c 2CPUr2c 4CPUc2c 4CPUr2c

9 0.6 0.7 0.6 0.4 0.4

10 0.7 1.2 0.6 0.8 0.5

11 0.7 1.9 0.9 1.2 0.5

12 1.3 4.1 1.8 2.3 1.1

13 2.0 10.2 7.2 5.6 3.8

14 3.8 27.6 17.9 14.9 9.2

15 7.3 62.0 36.0 32.0 18.4

16 - - 95.7 - 48.6

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 8 of 12

(number of decomposed parts). The results are depicted
in Figure 9(a).
The convolution itself consumes slightly less than a

half of the overall time. The rest is spent on the other
phases such as the preparation phase (memory alloca-
tion and setting up FFT plans [12] on GPU; and the
data padding and the data decomposition on CPU), data
transfers between CPU and GPU and finally the data
composition. As the preparation phases on GPU on
CPU are independent, they can be conducted simulta-
neously. The results can be confronted with Equation 8.
Here, the “Pad”, “Decompose”, “Allocate”, “CPU>GPU”,
“Convolution”, “GPU>CPU”, and “Compose” times cor-
respond to tp, td, ta, th®d, tconv, td®h, and tc, respectively.
In the case of the multi-GPU implementation the time

spent in the preparation phase on GPU ta is double, see
Figure 9(b). This unpleasant behavior is also observed
on a machine with CUDA 4.0 with extended support for
multi-GPU processing [25]. To the best of our knowl-
edge, it is not mentioned in official NVIDIA documents.
Fortunately, the time needed for padding the data on

CPU tp is still larger. Thus, the overhead inducted by ta
is hidden by tp. The times confronted with Equation 9
give us a good idea of how the usage of multiple GPU
cards can speed up the computation. Since the signifi-
cant portion of time is spent in sequential phases of the
algorithm, the overall speedup is limited, corresponding
to the famous Amdahl’s law [26].
We may draw the conclusion that it is reasonable to

choose the smallest value possible for P for given image
size. The exact results depend on particular dataset.
Sometimes, one may prefer usage of the (De)Compose4
function instead of the (De)Compose2 function–and
therefore setting P to 4 instead of 2, or to 16 instead of
8–since these two functions are equally efficient and the
Fourier transforms may be more efficient on the smaller
parts of the decomposed image, rather than on the lar-
ger parts.

3.4 Precision analysis
We tested our algorithm for real data from optical
microscopy. The bit depth of the images was 16 bits;

 0

 400

 800

 1200

 1600

 2000

 2400

 2 4 8 16

tim
e

[m
s]

P

CPU:
Compose
Idle time

Decompose
Pad

CPU:

GPU:
GPU>CPU

Convolution
CPU>GPU

Idle time
Allocate

(a) Single GPU

 0

 400

 800

 1200

 1600

 2000

 2400

 2 4 8 16

tim
e

[m
s]

P

CPU:
Compose
Idle time

Decompose
Pad

CPU:

GPU 1+2:
GPU>CPU

Convolution
CPU>GPU

Idle time
Allocate

(b) Two GPUs

Figure 9 Time analysis of the proposed convolution algorithm. The charts describe time (y-axis) spent in particular phases of the proposed
algorithm depending on decomposition parameter P (x-axis). In the single-GPU implementation there are two parallel timelines, one for CPU,
one for GPU. In the multi-GPU implementation two GPUs have been tested. Thus, there are three parallel timelines, one for CPU and one for
each GPU. The overall time of the algorithm is equal to the top of the CPU timeline.

Table 6 Precision analysis of specifically sized images

Image size δ[10-3] (single) δ [10-3] (double)

Image x × y × z [Mpx] P=1 P=2 P=4 P=8 P=16 P=1, . . . ,16
1 256 × 256 × 64 4.2 0.12 0.11 0.12 0.11 0.12 0.004

2 512 × 256 × 64 8.4 0.16 0.15 0.15 0.14 0.14 0.006

3 512 × 512 × 64 16.8 0.18 0.17 0.20 0.18 0.20 0.007

4 512 × 512 × 128 33.6 - 0.22 0.22 0.24 0.23 0.015

5 1024 × 512 × 128 67.1 - - 0.26 0.25 0.25 0.019

6 1024 × 1024 × 128 134.2 - - - 0.28 0.29 0.018

7 1024 × 1024 × 256 268.4 - - - - 0.26 -

8 2048 × 1024 × 256 536.9 - - - - - -

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 9 of 12

however, the actual bit depth of the image contents was
approximately 10-11 bits. This is often the case in the
optical microscopy since the bit depth is limited by both
parameters of CCD sensors, such as the accuracy of the
A/D convertor, and the imaging conditions, namely the
amount of light. The convolution normalized with the
sum of the kernel values was computed and the results
of the CPU implementation and the GPU implementa-
tion, both in single precision, were compared. Then the
maximum difference between the two resulting images
over all voxels was computed:

δ = max{|Ci − Gi|, i ∈ �}, (10)

where Ci is the voxel value at the position i in the
image computed by CPU, Gi is the voxel value at the
position i in the image computed by GPU and Ω is the
set of all coordinates in the image.
The results for different settings of the parameter P as

for both single and double precision are shown in
Tables 6 and 7. For the latter, the results were approxi-
mately the same for all values of P, therefore only one
column is shown for the sake of simplicity. As expected,
the precision is not an issue for specifically sized images.
For single precision the error is lower than 10-3, for
double it is even lower or equal to 10-5. However, it
starts to become an issue for arbitrarily sized images. As
results show, the error rate depends not only on the
overall image size, but also on the individual dimen-
sions. In particular, the error is significantly higher for
images of dimensions that cannot be factored into small
primes. Thus, the worst results (δ > 1) were achieved
for image where one dimension was equal to 257, which
is prime itself. In some cases, image padding can be
used to achieve better accuracy. For those applications
where the accuracy is essential, the double precision is
still required.
We find that for images of sizes that can be factored

into small primes single precision is acceptable for most
purposes. However, we are aware that in some applica-
tions single precision might not be enough. The recent
nVidia graphic cards offer computing in double

precision, however the speed is too low (1/8 of the
speed in single precision). With the release of the Fermi
architecture computing in double precision on GPU will
become feasible.

4 Conclusion
In this article, we have proposed a new method for con-
volving large images. We have taken advantage of high
computation power of GPU and extended the algorithm
with a decomposition. As a result we are able not only
to convolve images larger than the size of GPU memory,
but also to employ multiple GPUs in parallel.
Our method is generally suitable for complex data.

However, in the case of real data it is rather inefficient.
Since the input data are represented by the complex
numbers with zero imaginary parts, and not by the real
numbers, double effort is made to compute the result.
On the other hand, the method can be optimized for
real data in a few ways [22,24,27]. This is the subject of
our future study.
The results show that it is reasonable to use our algo-

rithm especially on very large images where the speedup
of the GPU implementation can be up to 5× for the
complex data and 2-3× for the real data. We suggest to
decompose images into the smallest number of parts
possible as this approach seems to be the most efficient.
We also studied the precision of the convolution in a

practical application. The results revealed that for this
application the computation in a single precision is
acceptable (and it will be probably so for many other
applications). In the case the single precision is not
enough it is also possible to compute in a double preci-
sion. However, in this precision the recent graphic cards
perform poorly. With the release of new architectures
(e.g., nVidia Fermi) double precision will become
feasible.
The proposed method can be implemented also in

OpenCL and other languages besides CUDA. Besides
the graphic cards, other parallel architectures can be
taken into account as well. As the convolution is a key
part of many deconvolution methods [28,29], application

Table 7 Precision analysis of arbitrarily sized images

Image size δ[100] (single) δ[10-3] (double)

Image x × y × z [Mpx] P=1 P=2 P=4 P=8 P=16 P=1, . . . ,16
9 257 × 257 × 64 4.2 0.02 0.56 1.12 1.90 3.24 0.018

10 513 × 257 × 64 8.4 0.01 0.94 1.69 2.65 4.15 0.003

11 513 × 513 × 64 16.8 < 0.01 0.53 0.90 1.35 2.15 0.003

12 513 × 513 × 128 33.7 - 0.54 0.87 1.04 1.46 0.011

13 1025 × 513 × 128 67.3 - - 1.19 1.38 1.67 0.004

14 1025 × 1025 × 128 134.5 - - - 0.80 0.91 0.010

15 1025 × 1025 × 256 269.0 - - - - 0.61 -

16 2049 × 1025 × 256 537.7 - - - - - -

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 10 of 12

of the proposed algorithm in the deconvolution will also
be the subject of our future study.

Endnotes
aIn 3D case both signals are padded to size M = Mf +
Mg - 1 in x dimension, L = Lf + Lg - 1 in y dimension
and K = Kf + Kg - 1 in z dimension; and the resulting
complexity is O (KLM log(KLM)). bSupposing the data
are stored in a memory in a row-major order, the last
dimension is the x dimension.

Acknowledgements
This work was supported by the Ministry of Education of the Czech Republic
(Projects No. MSM-0021622419, No. LC535, and No. 2B06052).
Appendix
.1 Conventions
We introduce the conventions used in the text:

• f * g... convolution of signals f, g
• F [

f
]
... Fourier transform of a signal f

• F−1 [F] ... inverse Fourier transform of a signal F
• f(m) ... a signal is denoted by a lowercase letter with a Latin letter index
• F(μ) ... a Fourier transform is denoted by an uppercase letter with a greek
letter index
•WM = ei

2π
M . . . a base function of a Fourier transform

In 1D case we introduce
• Mf , Mg ... sizes of the signal and the kernel, respectively
• M = Mf + Mg - 1 ... size of the output convolved signal
In 3D case we introduce
• Kf , Lf , Mf ... sizes of the signal in dimensions z, y, x, respectively
• Kg, Lg, Mg ... sizes of the kernel in dimensions z, y, x, respectively
• K, L, M ... sizes of the output convolved signal in dimensions z, y, x,
respectively (K = Kf + Kg-1, etc.)

.2 Decimation in frequency
A signal f(m) can directly be decomposed into four parts by applying
Equation 5 recursively:

r(m′)
{
t(n) ≡ r(n) + r(n +M/4),
u(n) ≡ [r(n) − r(n +M/4)]W−n

M/2;
(11a)

s(m′)
{
v(n) ≡ s(n) + s(n +M/4),
w(n) ≡ [s(n) − s(n +M/4)]W−n

M/2,
(11b)

where n = 0, ..., M/4 - 1. Then the Fourier transforms T(ν), U(ν), V (ν), and W
(ν) hold the following property:

T(v) = F(4ν), (12a)

U(v) = F(4ν + 2), (12b)

V(v) = F(4ν + 1), (12c)

W(v) = F(4ν + 3). (12d)

Now let us introduce

o ≡ n +M/4,

p ≡ n +M/2,

q ≡ n + 3M/4,

then it can be proved that

t(n) = x(n) + x(o) + x(p) + x(q), (13a)

u(n) = (x(n) − x(o) + x(p) − x(q))W−2n
M , (13b)

v(n) = [(x(n) − x(o)) − i(x(p) − x(q))]W−n
M , (13c)

w(n) = [(x(n) − x(o)) + i(x(p) − x(q))]W−3n
M . (13d)

For x(n), x(o), x(p), x(q) we get the following:

x(n) =
1
4

[
(t(n) + u(n)W2n

M) + (v(n)Wn
M + w(n)W3n

M)
]
, (14a)

x(o) =
1
4

[
(t(n) − u(n)W2n

M) + (v(n)Wn
M − w(n)iW3n

M)
]
,(14b)

x(p) =
1
4

[
t(n) + u(n)W2n

M) − (v(n)Wn
M + w(n)W3n

M)
]
, (14c)

x(q) =
1
4

[
(t(n) − u(n)W2n

M) − (v(n)Wn
M − w(n)iW3n

M)
]
.(14d)

Competing interests
The authors declare that they have no competing interests.

Received: 2 September 2010 Accepted: 28 November 2011
Published: 28 November 2011

References
1. RC Gonzales, RE Woods, Digital Image Processing, 2nd edn. (Prentice-Hall,

2002)
2. WK Pratt, Digital Image Processing, 3rd edn. (John Wiley & Sons, 2001)
3. B Jähne, Digital Image Processing, 6th edn. (Springer, 2005)
4. D Svoboda, M Kozubek, S Stejskal, Generation of Digital Phantoms of Cell

Nuclei and Simulation of Image Formation in 3D Image Cytometry.
CYTOMETRY PART A. 75A(6), 494–509 (JUN 2009). doi:10.1002/cyto.a.20714

5. V Podlozhnyuk, Image Convolution with CUDA. NVIDIA Corporation, (Jun
2007) http://developer.download.nvidia.com/compute/cuda/1.1-Beta/
x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.
pdf

6. Y Luo, R Duraiswami, Canny edge detection on nvidia cuda. Computer
Vision and Pattern Recognition Workshop, 1–8 (2008)

7. K Ogawa, Y Ito, K Nakano, Efficient canny edge detection using a gpu.
International Conference on Natural Computation, 279–280 (2010)

8. V Podlozhnyuk, FFT-based 2D convolution. NVIDIA Corporation, (Jun 2007)
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/
projects/convolutionFFT2D/doc/convolutionFFT2D.pdf

9. K Moreland, E Angel, The FFT on a GPU. in HWWS ‘03: Proceedings of the
ACM SIG-GRAPH/EUROGRAPHICS conference on Graphics hardware 112–119
(2003)

10. O Fialka, M Cadik, FFT and Convolution Performance in Image Filtering on
GPU. in Information Visualization, 2006. IV 2006. Tenth International
Conference on 609–614 (2006)

11. CUDA™ SDK code samples 3.1. NVIDIA Corporation, (Jun 2010) http://
developer.nvidia.com/cuda-toolkit-31-downloads

12. CUDA™ CUFFT Library 3.1. NVIDIA Corporation, (Jun 2010) http://developer.
nvidia.com/cuda-toolkit-31-downloads

13. A Nukada, Y Ogata, T Endo, S Matsuoka, Bandwidth intensive 3-D FFT
kernel for GPUs using CUDA, in SC ‘08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, Piscataway, NJ, USA: IEEE Press, pp. 1–11
(2008)

14. NK Govindaraju, B Lloyd, Y Dotsenko, B Smith, J Manferdelli, High
performance discrete Fourier transforms on graphics processors, in SC ‘08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Piscataway,
NJ, USA: IEEE Press, pp. 1–12 (2008)

15. OpenCL. Khronos Group, (Jun 2010) http://www.khronos.org/opencl/
16. OpenCL 1.1 Reference Pages. Khronos Group (Jun 2010) http://www.

khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 11 of 12

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19286894?dopt=Abstract
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://www.ncbi.nlm.nih.gov/pubmed/22148110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22148110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22148110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22148110?dopt=Abstract
http://www.khronos.org/opencl/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

17. H Trussell, B Hunt, Image restoration of space variant blurs by sectioned
methods, in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP ‘78. 3, 196–198 (Apr 1978)

18. AF Boden, DC Redding, RJ Hanisch, J Mo, Massively parallel spatially variant
maximum-likelihood restoration of Hubble Space Telescope imagery. J Opt
Soc Am A. 13(7), 1537–1545http://josaa.osa.org/abstract.cfm?URI=josaa-13-7-
1537 (1996). doi:10.1364/JOSAA.13.001537

19. RN Bracewell, The Fourier Transform and Its Applications, 3rd edn. (McGraw-
Hill, 2000)

20. JR Hanna, JH Rowland, Fourier Series, Transforms, and Boundary Value
Problems, 2nd edn. (John Wiley & Sons, 1990)

21. V WT, William PressH, Saul TeukolskyA, PB Flannery, in Numerical Recipes in
C, vol. ch 7, 2nd edn. (Cambridge University Press, 1992)

22. A Hey, The FFT demystified. Engineering Productivity Tools Ltd. 21
Leaveden Road, Watford, Hertfordshire, UKhttp://www.
engineeringproductivitytools.com/stuff/T0001/PT10.HTM

23. CUDA™ Programming Guide 3.1. NVIDIA Corporation http://developer.
nvidia.com/cuda-toolkit-31-downloads (Jun 2010)

24. A Saidi, Generalized FFT Algorithm. in IEEE International Conference on
Communications 93: Technical program, conference record, IEEE International
Conference on Communications - Communications: TECHNOLOGY THAT
UNITED NATIONS (ICC 93), Geneva, SWITZERLAND, 1993. 1-3, 227–231 (May
23-26, 1993)

25. CUDA™ Toolkit 4.0. NVIDIA Corporation http://developer.nvidia.com/cuda-
toolkit-40 (May 2011)

26. GM Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, in Proceedings of the April 18-20, 1967, spring
joint computer conference, ser. AFIPS ‘67 (Spring), (New York, NY, USA: ACM,
1967), pp. 483–485http://doi.acm.org/10.1145/1465482.1465560

27. E Brigham, Fast Fourier Transform and Its Applications, 1st edn. (Prentice-Hall,
1988)

28. PJ Verveer, Computational and optical methods for improving resolution
and signal quality in fluorescence microscopy, Ph.D. dissertation,
(Technische Universiteit Te Delft, 1998)

29. CW Quammen, D Feng, RM Taylor II, Performance of 3D Deconvolution
Algorithms on Multi-Core and Many-Core Architectures. University of North
Carolina at Chapel Hill, Department of Computer Science, Tech. Rep (2009)

doi:10.1186/1687-6180-2011-120
Cite this article as: Karas and Svoboda: Convolution of large 3D images
on GPU and its decomposition. EURASIP Journal on Advances in Signal
Processing 2011 2011:120.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Karas and Svoboda EURASIP Journal on Advances in Signal Processing 2011, 2011:120
http://asp.eurasipjournals.com/content/2011/1/120

Page 12 of 12

http://josaa.osa.org/abstract.cfm?URI=josaa-13-7-1537
http://josaa.osa.org/abstract.cfm?URI=josaa-13-7-1537
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-40
http://developer.nvidia.com/cuda-toolkit-40
http://doi.acm.org/10.1145/1465482.1465560
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	1.1 Convolution
	1.2 Convolution theorem
	1.3 Memory complexity

	2 Method
	2.1 GPU accelerated convolution
	2.2 Decimation in frequency
	2.3 Implementation
	2.4 Multi-GPU implementation

	3 Results
	3.1 Single GPU implementation
	3.2 Multi-GPU implementation
	3.3 Time analysis
	3.4 Precision analysis

	4 Conclusion
	Endnotes
	Acknowledgements
	Competing interests
	References

