2,128 research outputs found
Overcoming Barriers in Supply Chain AnalyticsâInvestigating Measures in LSCM Organizations
While supply chain analytics shows promise regarding value, benefits, and increase in performance for logistics and supply chain management (LSCM) organizations, those organizations are often either reluctant to invest or unable to achieve the returns they aspire to. This article systematically explores the barriers LSCM organizations experience in employing supply chain analytics that contribute to such reluctance and unachieved returns and measures to overcome these barriers. This article therefore aims to systemize the barriers and measures and allocate measures to barriers in order to provide organizations with directions on how to cope with their individual barriers. By using Grounded Theory through 12 in-depth interviews and Q-Methodology to synthesize the intended results, this article derives core categories for the barriers and measures, and their impacts and relationships are mapped based on empirical evidence from various actors along the supply chain. Resultingly, the article presents the core categories of barriers and measures, including their effect on different phases of the analytics solutions life cycle, the explanation of these effects, and accompanying examples. Finally, to address the intended aim of providing directions to organizations, the article provides recommendations for overcoming the identified barriers in organizations
Doubly connected minimal surfaces and extremal harmonic mappings
The concept of a conformal deformation has two natural extensions:
quasiconformal and harmonic mappings. Both classes do not preserve the
conformal type of the domain, however they cannot change it in an arbitrary
way. Doubly connected domains are where one first observes nontrivial conformal
invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue
for quasiconformal and harmonic mappings, respectively. Combining these
concepts we obtain sharp estimates for quasiconformal harmonic mappings between
doubly connected domains. We then apply our results to the Cauchy problem for
minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a
sharp estimate of the modulus of a doubly connected minimal surface that
evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde
Mappings of least Dirichlet energy and their Hopf differentials
The paper is concerned with mappings between planar domains having least
Dirichlet energy. The existence and uniqueness (up to a conformal change of
variables in the domain) of the energy-minimal mappings is established within
the class of strong limits of homeomorphisms in the
Sobolev space , a result of considerable interest in the
mathematical models of Nonlinear Elasticity. The inner variation leads to the
Hopf differential and its trajectories.
For a pair of doubly connected domains, in which has finite conformal
modulus, we establish the following principle:
A mapping is energy-minimal if and only if
its Hopf-differential is analytic in and real along the boundary of .
In general, the energy-minimal mappings may not be injective, in which case
one observes the occurrence of cracks in . Nevertheless, cracks are
triggered only by the points in the boundary of where fails to be
convex. The general law of formation of cracks reads as follows:
Cracks propagate along vertical trajectories of the Hopf differential from
the boundary of toward the interior of where they eventually terminate
before making a crosscut.Comment: 51 pages, 4 figure
Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex
Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200Â s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex
Rethinking âAdvanced Searchâ: A New Approach to Complex Query Formulation
Knowledge workers such as patent agents, recruiters and media monitoring professionals undertake work tasks where search forms a core part of their duties. In these instances, the search task often involves the formulation of complex queries expressed as Boolean strings. However, creating effective Boolean queries remains an ongoing challenge, often compromised by errors and inefficiencies. In this demo paper, we present a new approach to query formulation in which concepts are expressed on a two-dimensional canvas and relationships are articulated using direct manipulation. This has the potential to eliminate many sources of error, makes the query semantics more transparent, and offers new opportunities for query refinement and optimisatio
A practical multirobot localization system
We present a fast and precise vision-based software intended for multiple robot localization. The core component of the software is a novel and efficient algorithm for black and white pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost cameras, the core algorithm is able to process hundreds of images per second while tracking hundreds of objects with a millimeter precision. In addition, we present the method's mathematical model, which allows to estimate the expected localization precision, area of coverage, and processing speed from the camera's intrinsic parameters and hardware's processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions is verified in several experiments. Apart from the method description, we also make its source code public at \emph{http://purl.org/robotics/whycon}; so, it can be used as an enabling technology for various mobile robotic problems
Measuring streambed morphology using range imaging
River engineeringInnovative field and laboratory instrumentatio
Minimal Surfaces, Screw Dislocations and Twist Grain Boundaries
Large twist-angle grain boundaries in layered structures are often described
by Scherk's first surface whereas small twist-angle grain boundaries are
usually described in terms of an array of screw dislocations. We show that
there is no essential distinction between these two descriptions and that, in
particular, their comparative energetics depends crucially on the core
structure of their screw-dislocation topological defects.Comment: 10 pages, harvmac, 1 included postscript figure, final versio
Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex
BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. RESULTS: There were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance. CONCLUSION: These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement
- âŠ