37 research outputs found
Replica symmetry breaking in the `small world' spin glass
We apply the cavity method to a spin glass model on a `small world' lattice,
a random bond graph super-imposed upon a 1-dimensional ferromagnetic ring. We
show the correspondence with a replicated transfer matrix approach, up to the
level of one step replica symmetry breaking (1RSB). Using the scheme developed
by M\'ezard & Parisi for the Bethe lattice, we evaluate observables for a model
with fixed connectivity and long range bonds. Our results agree with
numerical simulations significantly better than the replica symmetric (RS)
theory.Comment: 21 pages, 3 figure
Dynamic rewiring in small world networks
We investigate equilibrium properties of small world networks, in which both
connectivity and spin variables are dynamic, using replicated transfer matrices
within the replica symmetric approximation. Population dynamics techniques
allow us to examine order parameters of our system at total equilibrium,
probing both spin- and graph-statistics. Of these, interestingly, the degree
distribution is found to acquire a Poisson-like form (both within and outside
the ordered phase). Comparison with Glauber simulations confirms our results
satisfactorily.Comment: 21 pages, 5 figure
A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation
We study the coupled dynamics of primary and secondary structure formation
(i.e. slow genetic sequence selection and fast folding) in the context of a
solvable microscopic model that includes both short-range steric forces and and
long-range polarity-driven forces. Our solution is based on the diagonalization
of replicated transfer matrices, and leads in the thermodynamic limit to
explicit predictions regarding phase transitions and phase diagrams at genetic
equilibrium. The predicted phenomenology allows for natural physical
interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.
Diagonalization of replicated transfer matrices for disordered Ising spin systems
We present an alternative procedure for solving the eigenvalue problem of
replicated transfer matrices describing disordered spin systems with (random)
1D nearest neighbor bonds and/or random fields, possibly in combination with
(random) long range bonds. Our method is based on transforming the original
eigenvalue problem for a matrix (where ) into an
eigenvalue problem for integral operators. We first develop our formalism for
the Ising chain with random bonds and fields, where we recover known results.
We then apply our methods to models of spins which interact simultaneously via
a one-dimensional ring and via more complex long-range connectivity structures,
e.g. dimensional neural networks and `small world' magnets.
Numerical simulations confirm our predictions satisfactorily.Comment: 24 pages, LaTex, IOP macro
The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers
Electrospinning has emerged as a powerful strategy to develop controlled release drug delivery systems but the effects of post-fabrication solvent vapor annealing on drug-loaded electrospun fibers have not been explored to date. In this work, electrospun poly(ԑ-caprolactone) (PCL) fibers loaded with the hydrophobic small-molecule spironolactone (SPL) were explored. Immediately after fabrication, the fibers are smooth and cylindrical. However, during storage the PCL crystallinity in the fibers is observed to increase, demonstrating a lack of stability. When freshly-prepared fibers are annealed with acetone vapor, the amorphous PCL chains recrystallize, resulting in the fiber surfaces becoming wrinkled and yielding shish-kebab like structures. This effect does not arise after the fibers have been aged. SPL is found to be amorphously dispersed in the PCL matrix both immediately after electrospinning and after annealing. In vitro dissolution studies revealed that while the fresh fibers show a rapid burst of SPL release, after annealing more extended release profiles are observed. Both the rate and extent of release can be varied through changing the annealing time. Further, the annealed formulations are shown to be stable upon storage
Spin models on random graphs with controlled topologies beyond degree constraints
We study Ising spin models on finitely connected random interaction graphs
which are drawn from an ensemble in which not only the degree distribution
can be chosen arbitrarily, but which allows for further fine-tuning of
the topology via preferential attachment of edges on the basis of an arbitrary
function Q(k,k') of the degrees of the vertices involved. We solve these models
using finite connectivity equilibrium replica theory, within the replica
symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin system
are found to depend no longer only on the chosen degree distribution, but also
on the choice made for Q(k,k'). The increased ability to control interaction
topology in solvable models beyond prescribing only the degree distribution of
the interaction graph enables a more accurate modeling of real-world
interacting particle systems by spin systems on suitably defined random graphs.Comment: 21 pages, 4 figures, submitted to J Phys
Slowly evolving random graphs II: Adaptive geometry in finite-connectivity Hopfield models
We present an analytically solvable random graph model in which the
connections between the nodes can evolve in time, adiabatically slowly compared
to the dynamics of the nodes. We apply the formalism to finite connectivity
attractor neural network (Hopfield) models and we show that due to the
minimisation of the frustration effects the retrieval region of the phase
diagram can be significantly enlarged. Moreover, the fraction of misaligned
spins is reduced by this effect, and is smaller than in the infinite
connectivity regime. The main cause of this difference is found to be the
non-zero fraction of sites with vanishing local field when the connectivity is
finite.Comment: 17 pages, 8 figure
Replicated Transfer Matrix Analysis of Ising Spin Models on `Small World' Lattices
We calculate equilibrium solutions for Ising spin models on `small world'
lattices, which are constructed by super-imposing random and sparse Poissonian
graphs with finite average connectivity c onto a one-dimensional ring. The
nearest neighbour bonds along the ring are ferromagnetic, whereas those
corresponding to the Poisonnian graph are allowed to be random. Our models thus
generally contain quenched connectivity and bond disorder. Within the replica
formalism, calculating the disorder-averaged free energy requires the
diagonalization of replicated transfer matrices. In addition to developing the
general replica symmetric theory, we derive phase diagrams and calculate
effective field distributions for two specific cases: that of uniform sparse
long-range bonds (i.e. `small world' magnets), and that of (+J/-J) random
sparse long-range bonds (i.e. `small world' spin-glasses).Comment: 22 pages, LaTeX, IOP macros, eps figure
On metastable configurations of small-world networks
We calculate the number of metastable configurations of Ising small-world
networks which are constructed upon superimposing sparse Poisson random graphs
onto a one-dimensional chain. Our solution is based on replicated
transfer-matrix techniques. We examine the denegeracy of the ground state and
we find a jump in the entropy of metastable configurations exactly at the
crossover between the small-world and the Poisson random graph structures. We
also examine the difference in entropy between metastable and all possible
configurations, for both ferromagnetic and bond-disordered long-range
couplings.Comment: 9 pages, 4 eps figure
Diluted antiferromagnet in a ferromagnetic enviroment
The question of robustness of a network under random ``attacks'' is treated
in the framework of critical phenomena. The persistence of spontaneous
magnetization of a ferromagnetic system to the random inclusion of
antiferromagnetic interactions is investigated. After examing the static
properties of the quenched version (in respect to the random antiferromagnetic
interactions) of the model, the persistence of the magnetization is analysed
also in the annealed approximation, and the difference in the results are
discussed