551 research outputs found

    Outgassing measurement of the aluminum alloy UHV chamber

    Get PDF
    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process

    3D Modelling and Printing of Microtonal Flutes

    Get PDF
    This project explores the potential for 3D modelling and printing to create customised flutes that can play music in a variety of microtonal scales. One of the challenges in the field of microtonality is that conventional musical instruments are inadequate for realising the abundance of theoretical tunings that musicians wish to investigate. This paper focuses on the development of two types of flutes, the recorder and transverse flute, with interchangeable mouthpieces. These flutes are designed to play subharmonic microtonal scales. The discussion provides an overview of the design and implementation process, including calculation methods for acoustic modelling and 3D printing technologies, as well as an evaluation of some of the difficulties encountered. Results from our 3D printed flutes suggest that whilst further refinements are necessary in our designs, 3D modelling and printing techniques offer new and valuable methods for the design and production of customised musical instruments. The long term goal of this project is to create a system in which users can specify the tuning of their instrument to generate a 3D model and have it printed on demand
    corecore