20 research outputs found

    Position dependent mismatch discrimination on DNA microarrays – experiments and model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The propensity of oligonucleotide strands to form stable duplexes with complementary sequences is fundamental to a variety of biological and biotechnological processes as various as microRNA signalling, microarray hybridization and PCR. Yet our understanding of oligonucleotide hybridization, in particular in presence of surfaces, is rather limited. Here we use oligonucleotide microarrays made in-house by optically controlled DNA synthesis to produce probe sets comprising all possible single base mismatches and base bulges for each of 20 sequence motifs under study.</p> <p>Results</p> <p>We observe that mismatch discrimination is mostly determined by the defect position (relative to the duplex ends) as well as by the sequence context. We investigate the thermodynamics of the oligonucleotide duplexes on the basis of double-ended molecular zipper. Theoretical predictions of defect positional influence as well as long range sequence influence agree well with the experimental results.</p> <p>Conclusion</p> <p>Molecular zipping at thermodynamic equilibrium explains the binding affinity of mismatched DNA duplexes on microarrays well. The position dependent nearest neighbor model (PDNN) can be inferred from it. Quantitative understanding of microarray experiments from first principles is in reach.</p

    Nonequilibrium effects in DNA microarrays: a multiplatform study

    Full text link
    It has recently been shown that in some DNA microarrays the time needed to reach thermal equilibrium may largely exceed the typical experimental time, which is about 15h in standard protocols (Hooyberghs et al. Phys. Rev. E 81, 012901 (2010)). In this paper we discuss how this breakdown of thermodynamic equilibrium could be detected in microarray experiments without resorting to real time hybridization data, which are difficult to implement in standard experimental conditions. The method is based on the analysis of the distribution of fluorescence intensities I from different spots for probes carrying base mismatches. In thermal equilibrium and at sufficiently low concentrations, log I is expected to be linearly related to the hybridization free energy ΔG\Delta G with a slope equal to 1/RTexp1/RT_{exp}, where TexpT_{exp} is the experimental temperature and R is the gas constant. The breakdown of equilibrium results in the deviation from this law. A model for hybridization kinetics explaining the observed experimental behavior is discussed, the so-called 3-state model. It predicts that deviations from equilibrium yield a proportionality of logI\log I to ΔG/RTeff\Delta G/RT_{eff}. Here, TeffT_{eff} is an effective temperature, higher than the experimental one. This behavior is indeed observed in some experiments on Agilent arrays. We analyze experimental data from two other microarray platforms and discuss, on the basis of the results, the attainment of equilibrium in these cases. Interestingly, the same 3-state model predicts a (dynamical) saturation of the signal at values below the expected one at equilibrium.Comment: 27 pages, 9 figures, 1 tabl

    Large scale analysis of positional effects of single-base mismatches on microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Affymetrix GeneChips utilize 25-mer oligonucleotides probes linked to a silica surface to detect targets in solution. Mismatches due to single nucleotide polymorphisms (SNPs) can affect the hybridization between probes and targets. Previous research has indicated that binding between probes and targets strongly depends on the positions of these mismatches. However, there has been substantial variability in the effect of mismatch type across studies.</p> <p>Methods</p> <p>By taking advantage of naturally occurring mismatches between rhesus macaque transcripts and human probes from the Affymetrix U133 Plus 2 GeneChip, we collected the largest 25-mer probes dataset with single-base mismatches at each of the 25 positions on the probe ever used in this type of analysis.</p> <p>Results</p> <p>A mismatch at the center of a probe led to a greater loss in signal intensity than a mismatch at the ends of the probe, regardless of the mismatch type. There was a slight asymmetry between the ends of a probe: effects of mismatches at the 3' end of a probe were greater than those at the 5' end. A cross study comparison of the effect of mismatch types revealed that results were not in good agreement among different reports. However, if the mismatch types were consolidated to purine or pyrimidine mismatches, cross study conclusions could be generated.</p> <p>Conclusion</p> <p>The comprehensive assessment of the effects of single-base mismatches on microarrays provided in this report can be useful for improving future versions of microarray platform design and the corresponding data analysis algorithms.</p

    ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt) genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis.</p> <p>Results</p> <p>We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at <url>http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/</url>.</p> <p>Conclusions</p> <p>ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.</p

    Summarizing activity limitations in children with chronic illnesses living in the community: a measurement study of scales using supplemented interRAI items

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test the validity and reliability of scales intended to measure activity limitations faced by children with chronic illnesses living in the community. The scales were based on information provided by caregivers to service program personnel almost exclusively trained as social workers. The items used to measure activity limitations were interRAI items supplemented so that they were more applicable to activity limitations in children with chronic illnesses. In addition, these analyses may shed light on the possibility of gathering functional information that can span the life course as well as spanning different care settings.</p> <p>Methods</p> <p>Analyses included testing the internal consistency, predictive, concurrent, discriminant and construct validity of two activity limitation scales. The scales were developed using assessment data gathered in the United States of America (USA) from over 2,700 assessments of children aged 4 to 20 receiving Medicaid Early and Periodic Screening, Diagnostic and Treatment (EPSDT) services, specifically Personal Care Services to assist children in overcoming activity limitations. The Medicaid program in the USA pays for health care services provided to children in low-income households. Data were collected in a single, large state in the southwestern USA in late 2008 and early 2009. A similar sample of children was assessed in 2010, and the analyses were replicated using this sample.</p> <p>Results</p> <p>The two scales exhibited excellent internal consistency. Evidence on the concurrent, predictive, discriminant, and construct validity of the proposed scales was strong. Quite importantly, scale scores were not correlated with (confounded with) a child's developmental stage or age. The results for these scales and items were consistent across the two independent samples.</p> <p>Conclusions</p> <p>Unpaid caregivers, usually parents, can provide assessors lacking either medical or nursing training with reliable and valid information on the activity limitations of children. One can summarize these data in scales that are both internally consistent and valid. Researchers and clinicians can use supplemented interRAI items to provide guidance for professionals and programs serving children, as well as older persons. This research emphasizes the importance of developing medical information systems that allow one to integrate information not only across care settings but also across an individual's life course.</p
    corecore