399 research outputs found
Spin and orbital ordering in double-layered manganites
We study theoretically the phase diagram of the double-layered perovskite
manganites taking into account the orbital degeneracy, the strong Coulombic
repulsion, and the coupling with the lattice deformation. Observed spin
structural changes as the increased doping are explained in terms of the
orbital ordering and the bond-length dependence of the hopping integral along
-axis. Temperature dependence of the neutron diffraction peak corresponding
to the canting structure is also explained. Comparison with the 3D cubic system
is made.Comment: 7 figure
Transport and magnetic properties of GdBaCo_{2}O_{5+x} single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping
Single crystals of the layered perovskite GdBaCo_{2}O_{5+x} (GBCO) have been
grown by the floating-zone method, and their transport, magnetic, and
structural properties have been studied in detail over a wide range of oxygen
contents. The obtained data are used to establish a rich phase diagram centered
at the "parent'' compound GdBaCo_{2}O_{5.5} -- an insulator with Co ions in the
3+ state. An attractive feature of GBCO is that it allows a precise and
continuous doping of CoO_{2} planes with either electrons or holes, spanning a
wide range from the charge-ordered insulator at 50% electron doping (x=0) to
the undoped band insulator (x=0.5), and further towards the heavily hole-doped
metallic state. This continuous doping is clearly manifested in the behavior of
thermoelectric power which exhibits a spectacular divergence with approaching
x=0.5, where it reaches large absolute values and abruptly changes its sign. At
low temperatures, the homogeneous distribution of doped carriers in GBCO
becomes unstable, and both the magnetic and transport properties point to an
intriguing nanoscopic phase separation. We also find that throughout the
composition range the magnetic behavior in GBCO is governed by a delicate
balance between ferromagnetic (FM) and antiferromagnetic (AF) interactions,
which can be easily affected by temperature, doping, or magnetic field,
bringing about FM-AF transitions and a giant magnetoresistance (MR) phenomenon.
An exceptionally strong uniaxial anisotropy of the Co spins, which dramatically
simplifies the possible spin arrangements, together with the possibility of
continuous ambipolar doping turn GBCO into a model system for studying the
competing magnetic interactions, nanoscopic phase separation and accompanying
magnetoresistance phenomena.Comment: 31 pages, 32 figures, submitted to Phys. Rev.
Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}
We demonstrate that an A-type antiferromagnetic (AFM) state of
Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the
transport property. This charge ordering is stripe-like, being characterized by
a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and
perpendicular to the stripe direction. This charge ordering is specific to the
manganites with relatively wide one-electron band width (W) which often exhibit
a metallic A-type AFM state, and should be strictly distinguished from the
CE-type checkerboard-like charge ordering which is commonly observed in
manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure
Magnon scattering processes and low temperature resistivity in CMR manganites
Low temperature resistivity of CMR manganites is investigated. At the ground
state, conduction electrons are perfectly spin polarized, which is called
half-metallic. From one-magnon scattering processes, it is discussed that the
resistivity of a half metal as a function of temperature scales as rho(T) -
rho(0) propto T^3. We take (Nd,Tb,Sr)MnO_3 as an example to compare theory and
experiments. The result is in a good agreement.Comment: To appear in Proc. ICM 200
Relation between crystal and magnetic structures of the layered manganites La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50)
Comprehensive neutron-powder diffraction and Rietveld analyses were carried
out to clarify the relation between the crystal and magnetic structures of
La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50). The Jahn-Teller (JT) distortion of Mn-O6
octahedra, i.e., the ratio of the averaged apical Mn-O bond length to the
equatorial Mn-O bond length, is Delta_JT=1.042(5) at x=0.30, where the magnetic
easy-axis at low temperature is parallel to the c axis. As the JT distortion
becomes suppressed with increasing x, a planar ferromagnetic structure appears
at x =< 0.32, which is followed by a canted antiferromagnetic (AFM) structure
at x =< 0.39. The canting angle between neighboring planes continuously
increases from 0 deg (planar ferromagnet: 0.32 =< x < 0.39) to 180 deg (A-type
AFM: x=0.48 where Delta_JT=1.013(5)). Dominance of the A-type AF structure with
decrease of JT distortion can be ascribed to the change in the eg orbital state
from d3z^2-r^2 to dx^2-y^2
Valence instability of cerium under pressure in the Kondo-like perovskite LaCeSrMnO
Effect of hydrostatic pressure and magnetic field on electrical resistance of
the Kondo-like perovskite manganese oxide,
LaCeSrMnO with a ferrimagnetic ground state, have
been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments
undergo double exchange mediated ferromagnetic ordering at
280 K and there is a resistance maximum, at about 130 K which is
correlated with an antiferromagnetic ordering of {\it cerium} with respect to
the Mn-sublattice moments. Under pressure, the shifts to lower
temperature at a rate of d/d = -162 K/GPa and disappears at a
critical pressure 0.9 GPa. Further, the coefficient, of
term due to Kondo scattering decreases linearly with increase of
pressure showing an inflection point in the vicinity of . These
results suggest that {\it cerium} undergoes a transition from Ce state
to Ce/Ce mixed valence state under pressure. In contrast to
pressure effect, the applied magnetic field shifts to higher
temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun
Pressure Effects in Manganites with Layered Perovskite Structure
Pressure effects on the charge and spin dynamics in the bilayer manganite
compounds are studied theoretically by taking into
account the orbital degrees of freedom. The orbital degrees are active in the
layered crystal structure, and applied hydrostatic pressure stabilizes the
orbital in comparison with . The change of the
orbital states weakens the interlayer charge and spin couplings, and suppresses
the three dimensional ferromagnetic transition. Numerical results, based on an
effective Hamiltonian which includes the energy level difference of the
orbitals, show that the applied pressure controls the dimensionality of the
spin and charge dynamics through changes of the orbital states.Comment: 5 pages, 2 figure
Optical Investigations of Charge Gap in Orbital Ordered La1/2Sr3/2MnO4
Temperature and polarization dependent electronic structure of La1/2Sr3/2MnO4
were investigated by optical conductivity analyses. With decreasing
temperature, for E//ab, a broad mid-infrared (MIR) peak of La1/2Sr3/2MnO4
becomes narrower and moves to the higher frequency, while that of
Nd1/2Sr3/2MnO4 nearly temperature independent. We showed that the MIR peak in
La1/2Sr3/2MnO4 originates from orbital ordering associated with CE-type
magnetic ordering and that the Jahn-Teller distortion has a significant
influence on the width and the position of the MIR peak.Comment: 10 pages, 4 figure
- …