64 research outputs found

    Adversarial Personalized Ranking for Recommendation

    Full text link
    Item recommendation is a personalized ranking task. To this end, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) --- the most widely used model in recommendation --- as a demonstration, we show that optimizing it with BPR leads to a recommender model that is not robust. In particular, we find that the resultant model is highly vulnerable to adversarial perturbations on its model parameters, which implies the possibly large error in generalization. To enhance the robustness of a recommender model and thus improve its generalization performance, we propose a new optimization framework, namely Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise ranking method BPR by performing adversarial training. It can be interpreted as playing a minimax game, where the minimization of the BPR objective function meanwhile defends an adversary, which adds adversarial perturbations on model parameters to maximize the BPR objective function. To illustrate how it works, we implement APR on MF by adding adversarial perturbations on the embedding vectors of users and items. Extensive experiments on three public real-world datasets demonstrate the effectiveness of APR --- by optimizing MF with APR, it outperforms BPR with a relative improvement of 11.2% on average and achieves state-of-the-art performance for item recommendation. Our implementation is available at: https://github.com/hexiangnan/adversarial_personalized_ranking.Comment: SIGIR 201

    Correlation length scalings in fusion edge plasma turbulence computations

    Full text link
    The effect of changes in plasma parameters, that are characteristic near or at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths are analysed by means of drift-Alfven turbulence computations. Scalings by density gradient length, collisionality, plasma beta, and by an imposed shear flow are considered. It is found that strongly sheared flows lead to the appearence of long-range correlations in electrostatic potential fluctuations parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion

    Achieving Generalizable Robustness of Deep Neural Networks by Stability Training

    Full text link
    We study the recently introduced stability training as a general-purpose method to increase the robustness of deep neural networks against input perturbations. In particular, we explore its use as an alternative to data augmentation and validate its performance against a number of distortion types and transformations including adversarial examples. In our image classification experiments using ImageNet data stability training performs on a par or even outperforms data augmentation for specific transformations, while consistently offering improved robustness against a broader range of distortion strengths and types unseen during training, a considerably smaller hyperparameter dependence and less potentially negative side effects compared to data augmentation.Comment: 18 pages, 25 figures; Camera-ready versio

    TCGM: An Information-Theoretic Framework for Semi-Supervised Multi-Modality Learning

    Full text link
    Fusing data from multiple modalities provides more information to train machine learning systems. However, it is prohibitively expensive and time-consuming to label each modality with a large amount of data, which leads to a crucial problem of semi-supervised multi-modal learning. Existing methods suffer from either ineffective fusion across modalities or lack of theoretical guarantees under proper assumptions. In this paper, we propose a novel information-theoretic approach, namely \textbf{T}otal \textbf{C}orrelation \textbf{G}ain \textbf{M}aximization (TCGM), for semi-supervised multi-modal learning, which is endowed with promising properties: (i) it can utilize effectively the information across different modalities of unlabeled data points to facilitate training classifiers of each modality (ii) it has theoretical guarantee to identify Bayesian classifiers, i.e., the ground truth posteriors of all modalities. Specifically, by maximizing TC-induced loss (namely TC gain) over classifiers of all modalities, these classifiers can cooperatively discover the equivalent class of ground-truth classifiers; and identify the unique ones by leveraging limited percentage of labeled data. We apply our method to various tasks and achieve state-of-the-art results, including news classification, emotion recognition and disease prediction.Comment: ECCV 2020 (oral

    Transformation Consistency Regularization – A Semi-supervised Paradigm for Image-to-Image Translation

    Get PDF
    Scarcity of labeled data has motivated the development of semi-supervised learning methods, which learn from large portions of unlabeled data alongside a few labeled samples. Consistency Regularization between model's predictions under different input perturbations, particularly has shown to provide state-of-the art results in a semi-supervised framework. However, most of these method have been limited to classification and segmentation applications. We propose Transformation Consistency Regularization, which delves into a more challenging setting of image-to-image translation, which remains unexplored by semi-supervised algorithms. The method introduces a diverse set of geometric transformations and enforces the model's predictions for unlabeled data to be invariant to those transformations. We evaluate the efficacy of our algorithm on three different applications: image colorization, denoising and super-resolution. Our method is significantly data efficient, requiring only around 10 - 20% of labeled samples to achieve similar image reconstructions to its fully-supervised counterpart. Furthermore, we show the effectiveness of our method in video processing applications, where knowledge from a few frames can be leveraged to enhance the quality of the rest of the movie

    IntersectGAN: Learning Domain Intersection for Generating Images with Multiple Attributes

    Full text link
    Generative adversarial networks (GANs) have demonstrated great success in generating various visual content. However, images generated by existing GANs are often of attributes (e.g., smiling expression) learned from one image domain. As a result, generating images of multiple attributes requires many real samples possessing multiple attributes which are very resource expensive to be collected. In this paper, we propose a novel GAN, namely IntersectGAN, to learn multiple attributes from different image domains through an intersecting architecture. For example, given two image domains X1X_1 and X2X_2 with certain attributes, the intersection X1X2X_1 \cap X_2 denotes a new domain where images possess the attributes from both X1X_1 and X2X_2 domains. The proposed IntersectGAN consists of two discriminators D1D_1 and D2D_2 to distinguish between generated and real samples of different domains, and three generators where the intersection generator is trained against both discriminators. And an overall adversarial loss function is defined over three generators. As a result, our proposed IntersectGAN can be trained on multiple domains of which each presents one specific attribute, and eventually eliminates the need of real sample images simultaneously possessing multiple attributes. By using the CelebFaces Attributes dataset, our proposed IntersectGAN is able to produce high quality face images possessing multiple attributes (e.g., a face with black hair and a smiling expression). Both qualitative and quantitative evaluations are conducted to compare our proposed IntersectGAN with other baseline methods. Besides, several different applications of IntersectGAN have been explored with promising results

    Intramucosal adenocarcinoma of the ileum originated 40 years after ileosigmoidostomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small bowel adenocarcinomas (SBAs) are rare carcinomas. They are asymptomatic and usually neither endoscopy nor contrast studies are performed for screening</p> <p>Case presentation</p> <p>A 72-year-old Japanese male had a positive fecal occult blood test at a regular check-up in 2006. He suffered appendicitis and received an ileosigmoidostomy in 1966. A colonoscopy revealed an irregular mucosal lesion with an unclear margin at the ileum side of the anastomosis. A mucosal biopsy specimen showed adenocarcinoma histopathologically. Excision of the anastomosis was performed for this patient. The resected specimen showed a flat mucosal lesion with a slight depression at the ileum adjacent to the anastomosis. Histological examination revealed a well differentiated intramucosal adenocarcinoma (adenocarcinoma in situ). Immunohistological staining demonstrated the overexpression of p53 protein in the adenocarcinoma.</p> <p>Conclusion</p> <p>Adenocarcinoma of the ileum at such an early stage is a very rare event. In this case, there is a possibility that the ileosigmoidostomy resulted in a back flow of colonic stool to the ileum that caused the carcinogenesis of the small intestine.</p
    corecore