34,772 research outputs found
Pfaffian Expressions for Random Matrix Correlation Functions
It is well known that Pfaffian formulas for eigenvalue correlations are
useful in the analysis of real and quaternion random matrices. Moreover the
parametric correlations in the crossover to complex random matrices are
evaluated in the forms of Pfaffians. In this article, we review the
formulations and applications of Pfaffian formulas. For that purpose, we first
present the general Pfaffian expressions in terms of the corresponding skew
orthogonal polynomials. Then we clarify the relation to Eynard and Mehta's
determinant formula for hermitian matrix models and explain how the evaluation
is simplified in the cases related to the classical orthogonal polynomials.
Applications of Pfaffian formulas to random matrix theory and other fields are
also mentioned.Comment: 28 page
Green's Functions and the Adiabatic Hyperspherical Method
We address the few-body problem using the adiabatic hyperspherical
representation. A general form for the hyperangular Green's function in
-dimensions is derived. The resulting Lippmann-Schwinger equation is solved
for the case of three-particles with s-wave zero-range interactions. Identical
particle symmetry is incorporated in a general and intuitive way. Complete
semi-analytic expressions for the nonadiabatic channel couplings are derived.
Finally, a model to describe the atom-loss due to three-body recombination for
a three-component fermi-gas of Li atoms is presented.Comment: 14 pages, 8 figures, 2 table
Density-functional theory for fermions in the unitary regime
In the unitary regime, fermions interact strongly via two-body potentials
that exhibit a zero range and a (negative) infinite scattering length. The
energy density is proportional to the free Fermi gas with a proportionality
constant . We use a simple density functional parametrized by an effective
mass and the universal constant , and employ Kohn-Sham density-functional
theory to obtain the parameters from fit to one exactly solvable two-body
problem. This yields and a rather large effective mass. Our approach
is checked by similar Kohn-Sham calculations for the exactly solvable Calogero
model.Comment: 5 pages, 2 figure
Energy correlations for a random matrix model of disordered bosons
Linearizing the Heisenberg equations of motion around the ground state of an
interacting quantum many-body system, one gets a time-evolution generator in
the positive cone of a real symplectic Lie algebra. The presence of disorder in
the physical system determines a probability measure with support on this cone.
The present paper analyzes a discrete family of such measures of exponential
type, and does so in an attempt to capture, by a simple random matrix model,
some generic statistical features of the characteristic frequencies of
disordered bosonic quasi-particle systems. The level correlation functions of
the said measures are shown to be those of a determinantal process, and the
kernel of the process is expressed as a sum of bi-orthogonal polynomials. While
the correlations in the bulk scaling limit are in accord with sine-kernel or
GUE universality, at the low-frequency end of the spectrum an unusual type of
scaling behavior is found.Comment: 20 pages, 3 figures, references adde
Independence Testing for Multivariate Time Series
Complex data structures such as time series are increasingly present in
modern data science problems. A fundamental question is whether two such
time-series are statistically dependent. Many current approaches make
parametric assumptions on the random processes, only detect linear association,
require multiple tests, or forfeit power in high-dimensional, nonlinear
settings. Estimating the distribution of any test statistic under the null is
non-trivial, as the permutation test is invalid. This work juxtaposes distance
correlation (Dcorr) and multiscale graph correlation (MGC) from independence
testing literature and block permutation from time series analysis to address
these challenges. The proposed nonparametric procedure is valid and consistent,
building upon prior work by characterizing the geometry of the relationship,
estimating the time lag at which dependence is maximized, avoiding the need for
multiple testing, and exhibiting superior power in high-dimensional, low sample
size, nonlinear settings. Neural connectivity is analyzed via fMRI data,
revealing linear dependence of signals within the visual network and default
mode network, and nonlinear relationships in other networks. This work uncovers
a first-resort data analysis tool with open-source code available, directly
impacting a wide range of scientific disciplines.Comment: 21 pages, 6 figure
Anomalous slow fidelity decay for symmetry breaking perturbations
Symmetries as well as other special conditions can cause anomalous slowing
down of fidelity decay. These situations will be characterized, and a family of
random matrix models to emulate them generically presented. An analytic
solution based on exponentiated linear response will be given. For one
representative case the exact solution is obtained from a supersymmetric
calculation. The results agree well with dynamical calculations for a kicked
top.Comment: 4 pages, 2 figure
Polynuclear growth model, GOE and random matrix with deterministic source
We present a random matrix interpretation of the distribution functions which
have appeared in the study of the one-dimensional polynuclear growth (PNG)
model with external sources. It is shown that the distribution, GOE, which
is defined as the square of the GOE Tracy-Widom distribution, can be obtained
as the scaled largest eigenvalue distribution of a special case of a random
matrix model with a deterministic source, which have been studied in a
different context previously. Compared to the original interpretation of the
GOE as ``the square of GOE'', ours has an advantage that it can also
describe the transition from the GUE Tracy-Widom distribution to the GOE.
We further demonstrate that our random matrix interpretation can be obtained
naturally by noting the similarity of the topology between a certain
non-colliding Brownian motion model and the multi-layer PNG model with an
external source. This provides us with a multi-matrix model interpretation of
the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure
A two-species model of a two-dimensional sandpile surface: a case of asymptotic roughening
We present and analyze a model of an evolving sandpile surface in (2 + 1)
dimensions where the dynamics of mobile grains ({\rho}(x, t)) and immobile
clusters (h(x, t)) are coupled. Our coupling models the situation where the
sandpile is flat on average, so that there is no bias due to gravity. We find
anomalous scaling: the expected logarithmic smoothing at short length and time
scales gives way to roughening in the asymptotic limit, where novel and
non-trivial exponents are found.Comment: 7 Pages, 6 Figures; Granular Matter, 2012 (Online
- …
