2,608 research outputs found
Extraction of thermal and electromagnetic properties in 45Ti
The level density and gamma-ray strength function of 45Ti have been
determined by use of the Oslo method. The particle-gamma coincidences from the
46Ti(p,d gamma)45Ti pick-up reaction with 32 MeV protons are utilized to obtain
gamma-ray spectra as function of excitation energy. The extracted level density
and strength function are compared with models, which are found to describe
these quantities satisfactorily. The data do not reveal any single-particle
energy gaps of the underlying doubly magic 40Ca core, probably due to the
strong quadruple deformation
Identification of a forebrain motor programming network for the learned song of zebra finches
The stereotyped delivery of sequences of vocalizations by singing zebra finches is thought to be mediated by a “central motor program.” We hypothesized that electrically stimulating, and thus perturbing, the neural components of this motor program during singing should alter the subsequent singing pattern. In contrast, perturbing the activity of other neurons in the song motor pathway that do not participate directly in generating the song temporal pattern should not affect the singing pattern. We found that unilaterally stimulating the forebrain area RA of singing birds with chronically implanted electrodes distorted ongoing syllables without changing the order or timing of ensuing syllables. However, stimulating forebrain area HVc, which projects directly to RA, altered both ongoing syllables and the ensuing song pattern. These findings indicate that syllable sequencing during singing is organized in forebrain areas above RA (including HVc) and that the resulting pattern is imposed on lower structures of the motor pathway. Furthermore, the observation that unilateral forebrain perturbation was sufficient to alter the pattern of this bilaterally organized behavior suggests that (non-auditory) feedback pathways to the forebrain exist to coordinate the two hemispheres during singing. We suggest that the study of the motor control system for birdsong has provided the most direct evidence to date for localizing the programming of a skilled motor sequence to the telencephalon
Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension.
Pulmonary arterial compliance (PAC), invasively assessed by the ratio of stroke volume to pulmonary arterial (PA) pulse pressure, is a sensitive marker of right ventricular (RV)-PA coupling that differs across the spectrum of pulmonary hypertension (PH) and is predictive of outcomes. We assessed whether the echocardiographically derived ratio of RV outflow tract velocity time integral to PA systolic pressure (RVOT-VTI/PASP) (a) correlates with invasive PAC, (b) discriminates heart failure with preserved ejection-associated PH (HFpEF-PH) from pulmonary arterial hypertension (PAH), and (c) is associated with functional capacity. We performed a retrospective cohort study of patients with PAH (n = 70) and HFpEF-PH (n = 86), which was further dichotomized by diastolic pressure gradient (DPG) into isolated post-capillary PH (DPG \u3c 7 mmHg; Ipc-PH, n = 54), and combined post- and pre-capillary PH (DPG ≥ 7 mm Hg; Cpc-PH, n = 32). Of the 156 patients, 146 had measurable RVOT-VTI or PASP and were included in further analysis. RVOT-VTI/PASP correlated with invasive PAC overall (ρ = 0.61, P \u3c 0.001) and for the PAH (ρ = 0.38, P = 0.002) and HFpEF-PH (ρ = 0.63, P \u3c 0.001) groups individually. RVOT-VTI/PASP differed significantly across the PH spectrum (PAH: 0.13 [0.010-0.25] vs. Cpc-PH: 0.20 [0.12-0.25] vs. Ipc-PH: 0.35 [0.22-0.44]; P \u3c 0.001), distinguished HFpEF-PH from PAH (AUC = 0.72, 95% CI = 0.63-0.81) and Cpc-PH from Ipc-PH (AUC = 0.78, 95% CI = 0.68-0.88), and remained independently predictive of 6-min walk distance after multivariate analysis (standardized β-coefficient = 27.7, 95% CI = 9.2-46.3; P = 0.004). Echocardiographic RVOT-VTI/PASP is a novel non-invasive metric of PAC that differs across the spectrum of PH. It distinguishes the degree of pre-capillary disease within HFpEF-PH and is predictive of functional capacity
M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation
We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC(50) value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC(50) of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC(50) (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active R-state, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13° rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. X-ray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism
Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations
An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions
Molecular Marker Analysis as a Guide to the Sources of Fine Organic Aerosols
The molecular composition of fine particulate (D_p ≥ 2 µm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available
Impact of Decmedetomidine on Opioid and Benzodiazepine Dosing Requirements in Children.
Poster presented at: Annual Update on Pediatric Cardiovascular Disease; February 2008; Scottsdale Arizona
Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles
Field measurements of the n-alkanes present in fine atmospheric aerosols show a predominance of odd carbon numbered higher molecular weight homologues (C_(27)–C_(33)) that is characteristic of plant waxes. Utilizing a local leaf wax n-alkane profile in conjunction with an air quality model, it is estimated that, at most, 0.2–1.0 μg m^(−3) of the airborne fine particulate matter (d_p < 2.1 μm) present in the Los Angeles basin could originate from urban vegetative detritus; this corresponds to approximately 1–3% of the total ambient fine aerosol burden. However, some of the observed vegetation aerosol fingerprint in the Los Angeles air may be due in part to emissions from food cooking rather than plant detritus. Seasonal trends in the ambient n-alkane patterns are examined to seek further insight into the relative importance of anthropogenic versus natural sources of vegetation-derived fine particulate matter
QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting.
To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with confirmed TB in Tanzania. Sensitivity and specificity of QFT and TST for diagnosing active TB as well as indeterminate QFT rates and IFN-γ levels were assessed in 211 TB suspect children in a Tanzanian district hospital and contrasted in 90 adults with confirmed pulmonary TB. Sensitivity of QFT and TST in children with confirmed TB was 19% (5/27) and 6% (2/31) respectively. In adults sensitivity of QFT and TST was 84% (73/87) and 85% (63/74). The QFT indeterminate rate in children and adults was 27% and 3%. Median levels of IFN-γ were lower in children than adults, particularly children <2 years and HIV infected. An indeterminate result was associated with age <2 years but not malnutrition or HIV status. Overall childhood mortality was 19% and associated with an indeterminate QFT result at baseline. QFT and TST showed poor performance and a surprisingly low sensitivity in children. In contrast the performance in Tanzanian adults was good and comparable to performance in high-income countries. Indeterminate results in children were associated with young age and increased mortality. Neither test can be recommended for diagnosing active TB in children with immature or impaired immunity in a high-burden setting
- …
