238 research outputs found
Hierarchical growing neural gas
“The original publication is available at www.springerlink.com”. Copyright Springer.This paper describes TreeGNG, a top-down unsupervised learning method that produces hierarchical classification schemes. TreeGNG is an extension to the Growing Neural Gas algorithm that maintains a time history of the learned topological mapping. TreeGNG is able to correct poor decisions made during the early phases of the construction of the tree, and provides the novel ability to influence the general shape and form of the learned hierarchy
Investigation of topographical stability of the concave and convex Self-Organizing Map variant
We investigate, by a systematic numerical study, the parameter dependence of
the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf
concave and convex learning with respect to different input distributions,
input and output dimensions
A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks
Among the many possible approaches for the parallelization of self-organizing
networks, and in particular of growing self-organizing networks, perhaps the
most common one is producing an optimized, parallel implementation of the
standard sequential algorithms reported in the literature. In this paper we
explore an alternative approach, based on a new algorithm variant specifically
designed to match the features of the large-scale, fine-grained parallelism of
GPUs, in which multiple input signals are processed at once. Comparative tests
have been performed, using both parallel and sequential implementations of the
new algorithm variant, in particular for a growing self-organizing network that
reconstructs surfaces from point clouds. The experimental results show that
this approach allows harnessing in a more effective way the intrinsic
parallelism that the self-organizing networks algorithms seem intuitively to
suggest, obtaining better performances even with networks of smaller size.Comment: 17 page
- …
