2,354 research outputs found

    Micro-displacement sensors based on plastic photonic bandgap Bragg fibers

    Full text link
    We demonstrate an amplitude-based micro-displacement sensor that uses a plastic photonic bandgap Bragg fiber with one end coated with a silver layer. The reflection intensity of the Bragg fiber is characterized in response to different displacements (or bending curvatures). We note that the Bragg reflector of the fiber acts as an efficient mode stripper for the wavelengths near the edge of the fiber bandgap, which makes the sensor extremely sensitive to bending or displacements at these wavelengths. Besides, by comparison of the Bragg fiber sensor to a sensor based on a regular multimode fiber with similar outer diameter and length, we find that the Bragg fiber sensor is more sensitive to bending due to presence of mode stripper in the form of the multilayer reflector. Experimental results show that the minimum detection limit of the Bragg fiber sensor can be smaller than 5 um for displacement sensing

    An integrated gene regulatory network controls stem cell proliferation in teeth.

    Get PDF
    Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species

    A route to high peak power and energy scaling in the mid-IR chirped-pulse oscillator-amplifier laser systems

    Full text link
    The paper introduces a new route towards the ultrafast high laser peak power and energy scaling in a hybrid mid-IR chirped pulse oscillator-amplifier (CPO-CPA) system, without sacrificing neither the pulse duration nor energy. The method is based on using a CPO as a seed source allowing the beneficial implementation of a dissipative soliton (DS) energy scaling approach, coupled with a universal CPA technique. The key is avoiding a destructive nonlinearity in the final stages of an amplifier and compressor elements by using a chirped high-fidelity pulse from CPO. Our main intention is to realize this approach in a Cr2+:ZnS-based CPO as a source of energy-scalable DSs with well-controllable phase characteristics for a single-pass Cr2+:ZnS amplifier. A qualitative comparison of experimental and theoretical results provides a road map for the development and energy scaling of the hybrid CPO-CPA laser systems, without compromising pulse duration. The suggested technique opens up a route towards extremely intense ultra-short pulses and frequency combs from the multi-pass CPO-CPA laser systems that are particularly interesting for real-life applications in the mid-IR spectral range from 1 to 20 um.Comment: 16 pages, 14 figure

    A Survey on Simultaneous Wireless Information and Power Transfer

    Get PDF
    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems

    Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes

    Full text link
    The degree zero part of the quantum cohomology algebra of a smooth Fano toric symplectic manifold is determined by the superpotential function, W, of its moment polytope. In particular, this algebra is semisimple, i.e. splits as a product of fields, if and only if all the critical points of W are non-degenerate. In this paper we prove that this non-degeneracy holds for all smooth Fano toric varieties with facet-symmetric duals to moment polytopes.Comment: 16 pages; corrected version, published in Electron. Res. Announc. Math. Sc

    Metamaterial Polarization Converter Analysis: Limits of Performance

    Full text link
    In this paper we analyze the theoretical limits of a metamaterial converter that allows for linear-to- elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50%, while the realistic re ection configuration can give the conversion efficiency up to 90%. We show that a double layer transmission converter and a single layer with a ground plane can have 100% polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.Comment: 10 pages, 11 figures, 2 table

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage
    corecore