217 research outputs found

    The influence of mycotoxins on ruminant health and performance

    Get PDF
    Hrana onečišćena mikotoksinima predstavlja bitan problem za ljude i životinje. Mikotoksini su toksični metaboliti plijesni koji narušavaju zdravlje ljudi i životinja te dovode do znatnih ekonomskih gubitaka. S tog aspekta najznačajniji su: aflatoksini, ohratoksin, trihoteceni, zearalenon, fumonisini, patulin, tremorgeni toksini i ergot alkaloidi. Neke plijesni mogu proizvoditi više različitih toksina, a neke mikotoksine može proizvesti od više različitih vrsta plijesni. Krmiva se mogu zaraziti već na polju, tijekom žetve ili tijekom skladištenja. Mikotoksini imaju različite akutne ili kronične učinke i to ovisno o vrsti i rezistenciji pojedine životinje. Preživači su znatno otporniji na negativne učinke od monogastričnih životinja. Glavni razlog tome je razgradnja mikotoksina mikrobiotima buraga. Pri tome su protozoe bitnije u biodegradaciji nego bakterije. Ipak, pri dugotrajnoj konzumaciji hrane zaražene mikotoksinima i kod preživača su mogući poremećaji u proizvodnji, reprodukciji i rastu. Posebno značajan problem predstavlja mogućnost prijenosa mikotoksina i njihovih metabolita na ljude, putem jestivih životinjskih proizvoda. Najčešće istraživane vrste preživača su: tovna i mliječna goveda, ovce, koze i jeleni.Contamination of foods and feeds with mycotoxins is a significant problem. Mycotoxins are toxic metabolites of molds that have adverse effects on humans, animals, and crops. Aflatoxins, ochratoxins, trichothecenes, zearelenone, fumonisins, tremorgenic toxins, and ergot alkaloids are the most important mycotoxins in animal production. Some molds are capable of producing more than one mycotoxin and some mycotoxins are produced by more than one fungal species. Mycotoxins could be synthesised before harvest, during harvest or during storage. Mycotoxins have acute and chronic effects on animals depending on species and susceptibility of an animal within a species. Ruminants are more resistant to the adverse effects of mycotoxins than the monogastric animals. The main reason for that is microbial degradation of mycotoxines. Protozoa are even more important in biodegradation than bacteria. However, production, reproduction, and growth can be altered when ruminants consume mycotoxin-contaminated feed for extended periods of time. Special problem is possible presence of mycotoxines and their metabolites in animal products. Beef cattle, dairy cattle, sheep, goats, and deer are among ruminants that have been investigated

    Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors

    Get PDF
    We report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad agreement between theoretical expectations and measured data allows us to conclude that T_c in high-quality metallic samples increases linearly with the number of uncompensated local moments on Mn_Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport and magnetization data are consistnent with the picture in which Mn impurities incorporated during growth at interstitial Mn_I positions act as double-donors and compensate neighboring Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I antiferromagnetic coupling. These defects can be efficiently removed by post-growth annealing. Our analysis suggests that there is no fundamental obstacle to substitutional Mn_Ga doping in high-quality materials beyond our current maximum level of 6.2%, although this achievement will require further advances in growth condition control. Modest charge compensation does not limit the maximum Curie temperature possible in ferromagnetic semiconductors based on (Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Interstitial Mn in (Ga,Mn)As: Binding energy and exchange coupling

    Full text link
    We present ab initio calculations of total energies of Mn atoms in various interstitial positions. The calculations are performed by the full-potential linearized plane-wave method. The minimum energy is found for tetrahedral T(As4) position, but the energy of the T(Ga4) site differs by only a few meV. The T(Ga4) position becomes preferable in the p-type materials. In samples with one substitutional and one interstitial Mn the Mn atoms tend to form close pair with antiparallel magnetic moments. We also use the spin-splitting of the valence band to estimate the exchange coupling Jpd for various positions of Mn. It is the same for the substitutional and T(As4) position and it is only slightly reduced for the T(Ga4) position. The hybridization of Mn d-states with six next-nearest neighbors of the interstitial Mn explains the insensitivity of Jpd to the position of Mn.Comment: 6 pages, 3 figures, 3 tables, submitted to the Physical Review

    Mn incorporation in as-grown and annealed (Ga,Mn)As layers studied by x-ray diffraction and standing-wave uorescence

    Full text link
    A combination of high-resolution x-ray diffraction and a new technique of x-ray standing wave uorescence at grazing incidence is employed to study the structure of (Ga,Mn)As diluted magnetic semiconductor and its changes during post-growth annealing steps. We find that the film is formed by a uniform, single crystallographic phase epilayer covered by a thin surface layer with enhanced Mn concentration due to Mn atoms at random non-crystallographic positions. In the epilayer, Mn incorporated at interstitial position has a dominant effect on lattice expansion as compared to substitutional Mn. The expansion coeffcient of interstitial Mn estimated from our data is consistent with theory predictions. The concentration of interstitial Mn and the corresponding lattice expansion of the epilayer are reduced by annealing, accompanied by an increase of the density of randomly distributed Mn atoms in the disordered surface layer. Substitutional Mn atoms remain stable during the low-temperature annealing.Comment: 9 pages, 9 figure

    Prospect for room temperature tunneling anisotropic magnetoresistance effect: density of states anisotropies in CoPt systems

    Full text link
    Tunneling anisotropic magnetoresistance (TAMR) effect, discovered recently in (Ga,Mn)As ferromagnetic semiconductors, arises from spin-orbit coupling and reflects the dependence of the tunneling density of states in a ferromagnetic layer on orientation of the magnetic moment. Based on ab initio relativistic calculations of the anisotropy in the density of states we predict sizable TAMR effects in room-temperature metallic ferromagnets. This opens prospect for new spintronic devices with a simpler geometry as these do not require antiferromagnetically coupled contacts on either side of the tunnel junction. We focus on several model systems ranging from simple hcp-Co to more complex ferromagnetic structures with enhanced spin-orbit coupling, namely bulk and thin film L10_0-CoPt ordered alloys and a monatomic-Co chain at a Pt surface step edge. Reliability of the predicted density of states anisotropies is confirmed by comparing quantitatively our ab initio results for the magnetocrystalline anisotropies in these systems with experimental data.Comment: 4 pages, 2 figure

    Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As

    Get PDF
    We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.Comment: 22 pages, 14 figure

    Theory of ferromagnetic (III,Mn)V semiconductors

    Get PDF
    The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.Comment: 58 pages, 49 figures Version accepted for publication in Rev. Mod. Phys. Related webpage: http://unix12.fzu.cz/ms
    corecore