15,500 research outputs found

    Money and Prices in the Philippines, 1981-1992: A Cointegration Analysis

    Get PDF
    Based largely on the work of Funke and Hall, estimation results indicate non-causality between money and price level attributed to the interplay of factors such as unstable political and economic environment. P* vector has no significance on potential output since Q instead of Q* has been used.monetary aggregates, causality, price level

    Money and Prices in the Philippines, 1981-1992: A Cointegration Analysis

    Get PDF
    Based largely on the work of Funke and Hall, estimation results indicate non-causality between money and price level attributed to the interplay of factors such as unstable political and economic environment. P* vector has no significance on potential output since Q instead of Q* has been used.monetary aggregates, causality, price level

    A new 2D static hand gesture colour image dataset for ASL gestures

    Get PDF
    It usually takes a fusion of image processing and machine learning algorithms in order to build a fully-functioning computer vision system for hand gesture recognition. Fortunately, the complexity of developing such a system could be alleviated by treating the system as a collection of multiple sub-systems working together, in such a way that they can be dealt with in isolation. Machine learning need to feed on thousands of exemplars (e.g. images, features) to automatically establish some recognisable patterns for all possible classes (e.g. hand gestures) that applies to the problem domain. A good number of exemplars helps, but it is also important to note that the efficacy of these exemplars depends on the variability of illumination conditions, hand postures, angles of rotation, scaling and on the number of volunteers from whom the hand gesture images were taken. These exemplars are usually subjected to image processing first, to reduce the presence of noise and extract the important features from the images. These features serve as inputs to the machine learning system. Different sub-systems are integrated together to form a complete computer vision system for gesture recognition. The main contribution of this work is on the production of the exemplars. We discuss how a dataset of standard American Sign Language (ASL) hand gestures containing 2425 images from 5 individuals, with variations in lighting conditions and hand postures is generated with the aid of image processing techniques. A minor contribution is given in the form of a specific feature extraction method called moment invariants, for which the computation method and the values are furnished with the dataset

    Expressive dysphasia possibly related to FK506 in two liver transplant recipients.

    Get PDF

    Polarimetric Multispectral Imaging Technology

    Get PDF
    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration

    139La NMR evidence for phase solitons in the ground state of overdoped manganites

    Full text link
    Hole doped transition metal oxides are famous due to their extraordinary charge transport properties, such as high temperature superconductivity (cuprates) and colossal magnetoresistance (manganites). Astonishing, the mother system of these compounds is a Mott insulator, whereas important role in the establishment of the metallic or superconducting state is played by the way that holes are self-organized with doping. Experiments have shown that by adding holes the insulating phase breaks into antiferromagnetic (AFM) regions, which are separated by hole rich clumps (stripes) with a rapid change of the phase of the background spins and orbitals. However, recent experiments in overdoped manganites of the La(1-x)Ca(x)MnO(3) (LCMO) family have shown that instead of charge stripes, charge in these systems is organized in a uniform charge density wave (CDW). Besides, recent theoretical works predicted that the ground state is inhomogeneously modulated by orbital and charge solitons, i.e. narrow regions carrying charge (+/-)e/2, where the orbital arrangement varies very rapidly. So far, this has been only a theoretical prediction. Here, by using 139La Nuclear Magnetic Resonance (NMR) we provide direct evidence that the ground state of overdoped LCMO is indeed solitonic. By lowering temperature the narrow NMR spectra observed in the AFM phase are shown to wipe out, while for T<30K a very broad spectrum reappears, characteristic of an incommensurate (IC) charge and spin modulation. Remarkably, by further decreasing temperature, a relatively narrow feature emerges from the broad IC NMR signal, manifesting the formation of a solitonic modulation as T->0.Comment: 5 pages, 4 figure

    Quantum gravity, space-time structure, and cosmology

    Full text link
    A set of diverse but mutually consistent results obtained in different settings has spawned a new view of loop quantum gravity and its physical implications, based on the interplay of operator calculations and effective theory: Quantum corrections modify, but do not destroy, space-time and the notion of covariance. Potentially observable effects much more promising than those of higher-curvature effective actions result; loop quantum gravity has turned into a falsifiable framework, with interesting ingredients for new cosmic world views. At Planckian densities, space-time disappears and is replaced by 4-dimensional space without evolution.Comment: 8 pages, 7 figures, Plenary talk at CosGrav12, held at Indian Statistical Institute, Kolkat
    • …
    corecore